290
A MEMOIR ON THE PROBLEM OF DISTURBED ELLIPTIC MOTION. [212
da —
de =
dg =
dt =
d(f> =
de =
The formulae for the variations thus become
2 dft
y- dt,
na dg
1 — e 2 dft 7 , VÎ — e 2 dft ,,
—ô—dt dt,
na 2 e dg na-e do
2 dft^ 1 -e 2 d£l^
j— dt— —5--j- dt,
na da na-e cle
Vl — e 2 dCl 7
r y~ dt
na-e de
na
cot (f) d£l
VÏ — e 2 d<f>
dt,
cot (f) dVl
na 2 Vl — e 2 dt
dt
cosec (j) dft
net
,2 Vl - e 2 d0
dt,
cosec <£ dft ,
nn n - Vi _ ¿> dd) ’
where, as before, ft = il (a, e, g, t, 0, <fi). This is the second system of formulæ for
the variations of the six elements a, e, g, t, 0, (f>.
The last-mentioned system may be easily deduced from Jacobi’s canonical system
of formulæ, viz. putting
21, the constant of vis viva,
2?, the constant of areas,
(5, the constant of the reduced area,
the constant attached to the time,
the angular distance of pericentre from node,
«£), the longitude of node ;
dîl =
dft
dg
dt,
d23 =
d® =
dft
d®
dft
dé
dt,
dt,
d%=-
d® = -
dSl
dîl
da
d93
dt,
dt,
d^ = -
dn
d(S
dt,
then the canonical system is