Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 3)

ON HANSENS LUNAR THEORY. 
or reducing 
Y P sm y 
' r sin / 
sin/(1 + e cos (f>) 
Write for a moment 
1 'sm/- sin cf> + esin(/- (f>)) (^ ~ sin (/- <f>) del. 
n 9 //-1 9\ n nae sm / t> a (1 - e-) 
P = na 2 V(1 - e 2 ), Q =-77- P= T -^ S, 
" * V(1 — e 2 ) 1 + e cos/ 
so that 
P- 
a (1 - e 2 ) = —3, 
n-a 3 
1 02 1 P 4 2 P 2 
n 4 a 6 ^ n 4 a 6 P 2 n 2 a 3 P 
We have therefore 
da 2ede 2 dP 
a 1 — e* r na‘{L-e-) 
/ 1 9 p3 o P\ i / 1 P 4 2 P 2 \ 
ede=(4- ß PQ 2 --f~ 6 dP + -j— P 2 QdQ + I- -f- 6 ^ + 4 1 dP, 
\?i 4 a ; c n 4 a 6 P 2 n 2 a 3 P/ n 4 a 4 ^ 4 " > L* 3 w- 2 «- 8 K-i 
n 4 a 6 P 2 n 2 a 3 P 
which, after reduction, becomes 
1 
na 2 (1 — e 2 ) 
and substituting these values, 
p sin 4> y _ 1 
' r sin/ ^ 1 + e cos $ 
e sin 2 / + 2 (cos/ + e cos 2 /)^ dP+ ^ V(1 — e 2 ) sin/dQ — ^ + a (l^e 2 ) 003 ^ 
'2 - 2cos(/-« + csin/sin(/- *)) dP 
-o(l-c>)sin (/-*) 
(1+e cos/) 5 cot/sin (/-(#>) 1 ,„| 
V(i-<0 
aa 2 V(1 — e 2 ) 
or substituting for X, X /y P, Q, P, their values 
p sin <b pe sin <p 
dlp ~ 7sSf dlr +i/-V) {df - d<t>) = 
/_ ^ ( 2 -2 cos (/- 4>) + esin/sin (/- (/.)) n(t! ,/ 1 —¿,) d,M s V(1 - e=) 
nae sin / 
- p sin (/- 0) 
pa /(1 - e 2 ) 
,7 
na 2 V(1 — e 2 ) V(1 - e 2 ) 
1 
cot /sin (/— d>) 
na 2 /(1 — e 2 ) 
dr. 
r->4 $-> te m a 
fer as a, f rá svis . sí 
p V S'# *
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.