ON HANSENS LUNAR THEORY.
or reducing
Y P sm y
' r sin /
sin/(1 + e cos (f>)
Write for a moment
1 'sm/- sin cf> + esin(/- (f>)) (^ ~ sin (/- <f>) del.
n 9 //-1 9\ n nae sm / t> a (1 - e-)
P = na 2 V(1 - e 2 ), Q =-77- P= T -^ S,
" * V(1 — e 2 ) 1 + e cos/
so that
P-
a (1 - e 2 ) = —3,
n-a 3
1 02 1 P 4 2 P 2
n 4 a 6 ^ n 4 a 6 P 2 n 2 a 3 P
We have therefore
da 2ede 2 dP
a 1 — e* r na‘{L-e-)
/ 1 9 p3 o P\ i / 1 P 4 2 P 2 \
ede=(4- ß PQ 2 --f~ 6 dP + -j— P 2 QdQ + I- -f- 6 ^ + 4 1 dP,
\?i 4 a ; c n 4 a 6 P 2 n 2 a 3 P/ n 4 a 4 ^ 4 " > L* 3 w- 2 «- 8 K-i
n 4 a 6 P 2 n 2 a 3 P
which, after reduction, becomes
1
na 2 (1 — e 2 )
and substituting these values,
p sin 4> y _ 1
' r sin/ ^ 1 + e cos $
e sin 2 / + 2 (cos/ + e cos 2 /)^ dP+ ^ V(1 — e 2 ) sin/dQ — ^ + a (l^e 2 ) 003 ^
'2 - 2cos(/-« + csin/sin(/- *)) dP
-o(l-c>)sin (/-*)
(1+e cos/) 5 cot/sin (/-(#>) 1 ,„|
V(i-<0
aa 2 V(1 — e 2 )
or substituting for X, X /y P, Q, P, their values
p sin <b pe sin <p
dlp ~ 7sSf dlr +i/-V) {df - d<t>) =
/_ ^ ( 2 -2 cos (/- 4>) + esin/sin (/- (/.)) n(t! ,/ 1 —¿,) d,M s V(1 - e=)
nae sin /
- p sin (/- 0)
pa /(1 - e 2 )
,7
na 2 V(1 — e 2 ) V(1 - e 2 )
1
cot /sin (/— d>)
na 2 /(1 — e 2 )
dr.
r->4 $-> te m a
fer as a, f rá svis . sí
p V S'# *