Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 3)

218] A THIRD MEMOIR ON THE PROBLEM OF DISTURBED ELLIPTIC MOTION. 
507 
To reduce these, we have in the first place 
dT . dT 
dr 
dT 
dr r 
dT 
dv 
dT 
= r(Q 2 + R 2 ), 
dQ . n dR\ 
=r- R cos y, ^ = r>(Q d £ + R d “)=^ (- QB - RA sin y), 
2 n dT n -pdR 
= - r 2Q = r 2 R -j- 
dy dy dy 
The equations are thus reduced to 
d 2 r ~ n 2 a? 
r( Q. +Ä)+ 
= r 2 R(— sin y .V — B cos y). 
dQ 
dr ’ 
(r 2 cos y. R) +r 2 (QB + RA sin y) — ^ , 
dQ 
) +^R{Any^ + B eoB y) = 
and then substituting for Q, R their values, viz. 
dy 
Q = 
dt 
dv 
+ A, 
R = cosy ^ -Bsin y, 
we 
find 
<Pr 
dt 2 
d 
dt 
dv''' 
r B, Hs 
+ 
n 2 a 3 dQ „ 
+ r> =* +ä ’ 
(r 2 
dv 
r 2 C0Vy Jt 
dQ 
dv 
+ 33, 
'(-S) 
dt 
where 
+ r 2 cos y sin y 
{dv A 2 
\dt) 
dQ ~ 
=W +6 ' 
2f = r (— ZA — 2B sin y cos + A 2 + B 2 sin 2 y) , 
dt 
dt 
23 = (r 2 B sin y cos y) + r 2 — A sin y cos y — — AB cos 2 y ^ , 
dv 
+ r 2 (— (cos 2 y — sin 2 y) B^+B 2 sin y cos y j, 
in which 
a / r\ • # / dO . . #. dcp 
A = cos (v — <7 ) sin cp + sm (v — cr ) , 
-r. • / • , / dO' . dtp' 
B = sm (v — a) sm (p + cos (v — a ) ; 
O', a, <p' being given functions of t such that da — cos cp' dO' = 0. 
The foregoing equations of motion are rigorously accurate. 
64—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.