Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 3)

and if the Moon were in the variable ecliptic, its latitude would be sin </>'sin (v — a); 
that is, the latitude, measured from the variable ecliptic, is = s — sin <£' sin (v — a'); or, 
putting 
s /} the Moon’s latitude, measured from the variable ecliptic, 
we have 
s = sin 0' sin (v — a) + s r 
Hence, disregarding the variations of cf>', a, we have 
ds . , . /. ds, 
; = sm <f> cos (v-a) + -^; 
ds 
and substituting these values of s, and s', we find 
s cos (v ~ v )~^ v s i n ( v ~ v ) ~ s ' 
d 9 
= S / COS (V — V ) — ~ sin (V — V') 
+ sin <£' -jsin (v — a) cos (v — v') — cos (v — a) sin (v — v) — sin (v — a') 
= s y cos (v — v') — — sin (v — v'); 
ds d£l dil , oN d£l 
dv di-“d ! 7 (1 + s) dF 
* f ^ 
cos (v — v') -Is, cos (v s ^ n ( v ; 
which, neglecting the periodic terms, is 
2 „,2 "/ ’ 
_ mu 
= & —-s,: 
and then
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.