and if the Moon were in the variable ecliptic, its latitude would be sin </>'sin (v — a);
that is, the latitude, measured from the variable ecliptic, is = s — sin <£' sin (v — a'); or,
putting
s /} the Moon’s latitude, measured from the variable ecliptic,
we have
s = sin 0' sin (v — a) + s r
Hence, disregarding the variations of cf>', a, we have
ds . , . /. ds,
; = sm <f> cos (v-a) + -^;
ds
and substituting these values of s, and s', we find
s cos (v ~ v )~^ v s i n ( v ~ v ) ~ s '
d 9
= S / COS (V — V ) — ~ sin (V — V')
+ sin <£' -jsin (v — a) cos (v — v') — cos (v — a) sin (v — v) — sin (v — a')
= s y cos (v — v') — — sin (v — v');
ds d£l dil , oN d£l
dv di-“d ! 7 (1 + s) dF
* f ^
cos (v — v') -Is, cos (v s ^ n ( v ;
which, neglecting the periodic terms, is
2 „,2 "/ ’
_ mu
= & —-s,:
and then