46
ON schellbach’s solution of malfatti’s problem.
[170
and consequently
where if
v 2 +£ 2 = ^s 2 -2\l, v £=s(\-l),
cj) = —-, (X — <j>) 2 = ^s 2 + (¡r — m 2 — n 2 ,
i.e.
2 mn
s
4 m 2 n 2
40 -1 m 2 — n-
^ /{/ (s 2 — 4m 2 ) (s 2 — 4/i 2 )
Hence
. , 4tlmn l /-—-— /——-—
17“ + = y s 2 — vs 2 — 4m 2 vs 2 — 4?i 2 ,
??£■ = 2wmi — sl + Vs 2 — 4 m 2 Vs 2 — 4A 2 ,
g* + f = is 2 - - - Vs 2 - 4n 2 Vs 2 - 4/ 2 ,
s s
££ = 2nl — sm + ^Vs 2 — 4?i 2 Vs 2 — 41 2 ,
p + = i.s 2 - - - Vs 2 - 4i 2 Vs 2 - 4m 2 ,
s s
%t) = 2Im — sn + \ Vs 2 — 4/ 2 Vs 2 — 4m 2 ,
which is in fact at once deducible from the formulae in my paper “ On a System of
Equations connected with Malfatti’s Problem and on another Algebraical System,”
(Carnb. and Dvbl. Math. Journ. t. iv. (1849), p. 270 [79]).
Write now for l, m, n, rj, their values in terms of a, b, c, x, y, z. We have
(£« - y)~ + (1« - z? - 7 (i* - a) (1« - y) (¿S -z)= Is 2 - (f s - a) 2 ,
i.e.
y 2 + z 2 Qs — a) yz — 2a {y + z) + a 2 = 0,
or reducing
and we have thus the system
(y + z - a) 2 - 4 (l - ^ yz = 0,
y + z + 2 \ - ^ Vyz = a,
z + x + 2 u --^Vzx =b,
x + y + 2 Vxy = c,