Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 3)

64 on laplace’s method foe, the atteaction of ellipsoids 
[173 
In fact, assuming this equation for any particular value of i, we find first 
„ d nn d , d \ . f d 2 _ d 2 d 2 V -1 / „ cZ 2 d 2 „ d 2 \ 
a “^ + + r Ki ~ 1 ( a dP + 13 db 2 + 7 dp) ( a da 2 + i3 'db 2 + 7 dd) 
-> 2 ^ + ^ 2 i + 72 S 
cZ 2 
db 2 
¿Zc ; 
cZ 2 
(Z 2 
cZa 2 
„ cZ 2 
+ 055 + 7 
d ! \"> 
V (a 2 + Z> 2 + c 2 ) 
1 
db 2 ' (ZcV V( a2 + 6 2 h- c 2 ) 
^ a2 cZa 2 + /32 (Z6 2 + 72 rfc 
Ki-v 
Now putting for shortness 
. d 2 n d 2 d 2 
A ~ a ~ + # + V ^> 
da 2 ^ cZ6 2 ' eZc 2 
we find, replacing Aif i+1 and AJi^ by their values K i+2 and J5T i+1 , 
A ( a 2 + Z> 2 + c 2 ) if i+1 = ( a 2 + b 2 + c 2 ) if i+2 
d 
A (“* da + 6/3 db + 07 dc) A ' ~ 
A (“ a s + ^| +7, i)^ = 
A ( a + /3 + y ) Ki = 
+4 (“s + W;s +, »as) 
+ 2(a +/3 +7 ) iT i+1 , 
{ m 3a + d0 Tb + Crf lc) Ki+ ' 
n ( „ iZ 2 cZ 2 „ cZ 2 
+ 2 V a da 2 + ^db 2 + ry dc'- 
K, 
„2 d , 03 ^ , o d 
a ^ + ^^ + 7 
- a 
cZa 
iZ 2 
+ ^^2 + 7’ 
K u 
Ki, 
dyj ~ l+] 
d 2 
da 2 ' ^ cZ6 2 ' 1 dc 2 ) 
(a + /3 +7 ) Ki +1 ; 
hence operating on the equation of differences with the symbol A, we obtain 
(a 2 + Z> 2 + c 2 ) Ki +2 + (4Z 4- 7) f act -j- + Z>/3 jr + 07 ■j-') K{ +1 
V iZa 
(Z 
<ZZ> 
(Z 
dc 
d 
+ (4i + 2) ( a* - + ^ +y ^) K , 
+ {2 (4* + 3) - (4i + 2)) (*» £ 2 + /3’ + y d ' 
clb 2 
d& 
K 
+ (2i + 3) ( a. + /3 + 7 
)K i+ 1 = 0,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.