64 on laplace’s method foe, the atteaction of ellipsoids
[173
In fact, assuming this equation for any particular value of i, we find first
„ d nn d , d \ . f d 2 _ d 2 d 2 V -1 / „ cZ 2 d 2 „ d 2 \
a “^ + + r Ki ~ 1 ( a dP + 13 db 2 + 7 dp) ( a da 2 + i3 'db 2 + 7 dd)
-> 2 ^ + ^ 2 i + 72 S
cZ 2
db 2
¿Zc ;
cZ 2
(Z 2
cZa 2
„ cZ 2
+ 055 + 7
d ! \">
V (a 2 + Z> 2 + c 2 )
1
db 2 ' (ZcV V( a2 + 6 2 h- c 2 )
^ a2 cZa 2 + /32 (Z6 2 + 72 rfc
Ki-v
Now putting for shortness
. d 2 n d 2 d 2
A ~ a ~ + # + V ^>
da 2 ^ cZ6 2 ' eZc 2
we find, replacing Aif i+1 and AJi^ by their values K i+2 and J5T i+1 ,
A ( a 2 + Z> 2 + c 2 ) if i+1 = ( a 2 + b 2 + c 2 ) if i+2
d
A (“* da + 6/3 db + 07 dc) A ' ~
A (“ a s + ^| +7, i)^ =
A ( a + /3 + y ) Ki =
+4 (“s + W;s +, »as)
+ 2(a +/3 +7 ) iT i+1 ,
{ m 3a + d0 Tb + Crf lc) Ki+ '
n ( „ iZ 2 cZ 2 „ cZ 2
+ 2 V a da 2 + ^db 2 + ry dc'-
K,
„2 d , 03 ^ , o d
a ^ + ^^ + 7
- a
cZa
iZ 2
+ ^^2 + 7’
K u
Ki,
dyj ~ l+]
d 2
da 2 ' ^ cZ6 2 ' 1 dc 2 )
(a + /3 +7 ) Ki +1 ;
hence operating on the equation of differences with the symbol A, we obtain
(a 2 + Z> 2 + c 2 ) Ki +2 + (4Z 4- 7) f act -j- + Z>/3 jr + 07 ■j-') K{ +1
V iZa
(Z
<ZZ>
(Z
dc
d
+ (4i + 2) ( a* - + ^ +y ^) K ,
+ {2 (4* + 3) - (4i + 2)) (*» £ 2 + /3’ + y d '
clb 2
d&
K
+ (2i + 3) ( a. + /3 + 7
)K i+ 1 = 0,