Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 4)

436 
ON A PARTICULAR CASE OF CASTILLON’s PROBLEM. 
[282 
Hence observing that the distance of one of the angles of the circumscribed triangle 
is sec ^ (/3 — 7), and that the projection of this line perpendicular to the corresponding 
side of the inscribed triangle is equal to sec £ (/3 — 7) cos (a' - a'), which is equal to the 
projection of the radius perpendicular to the same side, or to cos ^(6— c), we have 
cos (a — a') = cos £ (/3 — 7) cos ^ (b — c), 
cos (¡3' — b') = cos ^ (7 — a.) cos £ (c — a), 
cos (7' — c') = cos ^ (a — /3) cos ^ (a — b). 
Write 
b — c = 4f, b + c — 2a = 4iX, 
c — a = 4g, c + a —W=4>y, 
a — b = 4h, a + b — 2y = 4z ; 
therefore 
cos(y + 0 + g — h) = cos 2/cos(f+y— z), 
cos (z + x + h —f) = cos 2 g cos (g + z — x), 
cos (x + y + f— g) = cos 2h cos (h + x — y), 
or, since f+g + h=Q, 
cos {(y - h) + (z+ g)} = cos 2/cos {(y - h) - (z + g)), 
cos {{z —f) + (x + h)} = cos2g cos {(z—f) — (x+ /1)}, 
cos {(a-g) + (y +/)] = cos 2h cos {(x -g)-(y +/)}, 
or 
tan 2 / = tan (y — h) tan (.z + g), 
tan 2 g = tan (z —f) tan (x 4- h), 
tan 2 h = tan (x — g) tan (y+f ). 
Put 
x + h = g, x-g = £ li 
y +/= ?» y-h = Zi, 
z+g = £, z -/=%, 
tan f =1 , tan £ = x, tan = x 1 , 
tan g = m, tan g — y, tan g x = y lf 
tan h = n , tan £ = z, tan = z 2 . 
We have then 
tan 2 / = tan | tan £, 
tan 2 g = tan r; tan g x , 
tan 2 A = tan £ tan £i, 
or, what is the same thing, 
l~ = xXj, mr — yy l , n- = zzj.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.