436
ON A PARTICULAR CASE OF CASTILLON’s PROBLEM.
[282
Hence observing that the distance of one of the angles of the circumscribed triangle
is sec ^ (/3 — 7), and that the projection of this line perpendicular to the corresponding
side of the inscribed triangle is equal to sec £ (/3 — 7) cos (a' - a'), which is equal to the
projection of the radius perpendicular to the same side, or to cos ^(6— c), we have
cos (a — a') = cos £ (/3 — 7) cos ^ (b — c),
cos (¡3' — b') = cos ^ (7 — a.) cos £ (c — a),
cos (7' — c') = cos ^ (a — /3) cos ^ (a — b).
Write
b — c = 4f, b + c — 2a = 4iX,
c — a = 4g, c + a —W=4>y,
a — b = 4h, a + b — 2y = 4z ;
therefore
cos(y + 0 + g — h) = cos 2/cos(f+y— z),
cos (z + x + h —f) = cos 2 g cos (g + z — x),
cos (x + y + f— g) = cos 2h cos (h + x — y),
or, since f+g + h=Q,
cos {(y - h) + (z+ g)} = cos 2/cos {(y - h) - (z + g)),
cos {{z —f) + (x + h)} = cos2g cos {(z—f) — (x+ /1)},
cos {(a-g) + (y +/)] = cos 2h cos {(x -g)-(y +/)},
or
tan 2 / = tan (y — h) tan (.z + g),
tan 2 g = tan (z —f) tan (x 4- h),
tan 2 h = tan (x — g) tan (y+f ).
Put
x + h = g, x-g = £ li
y +/= ?» y-h = Zi,
z+g = £, z -/=%,
tan f =1 , tan £ = x, tan = x 1 ,
tan g = m, tan g — y, tan g x = y lf
tan h = n , tan £ = z, tan = z 2 .
We have then
tan 2 / = tan | tan £,
tan 2 g = tan r; tan g x ,
tan 2 A = tan £ tan £i,
or, what is the same thing,
l~ = xXj, mr — yy l , n- = zzj.