Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 4)

282] 
ON A PARTICULAR CASE OF CASTILLON’s PROBLEM. 
437 
But to obtain equations involving only one of the sets (x, y, z), (x 1? y 1( z/ it is proper 
to write 
tan 2 / = tan (£ + g) tan £ = tan £ tan (£i — h), 
tan 2 g = tan (£ + /¿) tan rj = tan r/ 1 tan (£ — /), 
tan 2 h = tan (vj + /)tan £ = tan £ tanfo — gr); 
taking the first set of equations, we have 
x (z + m) 
1 — mz ’ 
z (y + l) 
therefore 
l 2 — rax 
m 2 (1 — nx) _ 
x + Pm ’ 
x + n 
therefore 
y + Z : 1 — Zy = m 2 + In + (l — m 2 n) x : n — lm 2 + (1 + lm?n) x ; 
therefore 
ft 2 [n — lm 2 + (1 + lm 2 n) x} (l 2 m + x) = (l 2 — mx) [m 2 + In + (l — ni 2 n) x}; 
therefore 
(l 2 m 2 + l 3 n — l 2 mn 3 + l 3 m 3 n 2 ) 
+ x (— n 3 + Zm 2 n 2 — l 2 mn 2 — l 3 m 3 n 3 — in 3 — Iran + l 3 — l 2 m 2 n) 
+ x 2 (— lm + m 3 n — n 2 — lm 2 n 3 ) = 0. 
Now l + m + n= Imn, and by means of this relation we find 
Coef. x° = l {lm 2 + Pn — n 2 (l + m+ n)+ m (l+ m + n) 2 }, 
Coef. x = — n 3 + mn (l + m + n) — In (l + m + n) — (l + m + n) 3 — m 3 
— Imn + l 3 — lm (l+m + n), 
or, reducing, 
| coef. x 3 = (m 3 + 2m 2 n — n 3 ) + l (3m 2 4- 2mn — n 2 ) + P (m + n) 
= (m + n) {(m 2 + mn — n 2 ) +1 (3m — n) + P] 
= (m + n) {(l + m) 2 + (l + m)(l + n) — (1 + n) 2 }, 
— \ coef. x = m 3 + m 2 n + mn 2 + n 3 + 21 (m 2 + 2mn + n 2 ) + 21 2 (m + n) 
= (m + n) {m 2 + n 2 + 21 (m + n) + №} 
= (m + w) {(Z + m) 2 + (Z + n) 2 }, 
Z coef. x 2 = (m 3 — 2m?i 2 — n 3 ) + Z (??r 2 — 2nm — 3n 2 ) — l 2 (m + n) 
= (m + w) {(m 2 — mn — n 2 ) + Z (m — 3?i) — Z 2 } 
= (m + w) {(Z + mf — (1 + m) (l + n) —(l + n) 2 };
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.