Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

[315 
315] 
WITH RESPECT TO THREE LINES AND A LINE. 
75 
double centre. And 
we obtain 
X y z a 
X+P + y + P + Z + P~ ' 
\!x + P 1 Vy + P + \/. z + P~°’ 
which are easily transformed into 
2 ); 
cc y \ ^ Ct 
x+P + y + P 1 Z + P 
yz t zx t xy 
0/ + P) (z + P) + (z +1) (X+P) + 0 + P) (y + P) ’ 
or, what is the same thing, 
6 (P + x) (P + y) (P + z) - x (P + y) (P + z) - y (P + z) (P + x) - z (P + x) (P + y) = 0, 
) $ -|- \, 0 + ¡Jb, 0 V \ 
9 (P + x)(P + y) (P + z) — yz (P + x) — zx (P + y) — xy (P + z) = 0, 
which give 
GP 3 + 5 P 2 (x + y + z) + 4 P (yz + zx + xy) + 2>xyz = 0, 
9P 3 + 9P 2 (x + y + z) + 8P (yz + zx + xy) + 6xyz = 0 ; 
locus of the double 
or, multiplying the first equation by 2, and subtracting the second, 
3P + (x + y + z) = 0; 
nonically in respect 
differently in the 
and we thus obtain for the locus of the single centre the equation 
x y z _ 
— 2 x + y z —2y + z + x —2 z + x + y 
antre. And we now 
or, what is the same thing, 
3 □ — 6a 2 
be 6a 2 5 
x? + y 3 + z s — (yz 2 + zx 2 + xy 2 + y 2 z + z 2 x + x 2 y) + 3 xyz — 0, 
which may also be written, 
— (—X + y + z) (x — y + z)(x + y — z) + xyz = 0. 
) 0 + 0 + fJL, 0 + V, 
The same result may also be obtained as follows: viz., observing that 
es P, a, b, c have 
: viz., writing the 
□ — 6 a 2 = b 2 + c 2 — 5a 2 = — 4«” — 25c, 
we have 
x — 3a 2 y — 35 2 £ — 3c 2 
P 2a 2 + 5c ’ P 25 2 + ca ’ P 2c 2 + «5 ’ 
and then by means of the equation 
a 2 5 2 c 2 I — ft 
2a 2 + 5c ' 25 2 + ac + 2c 2 + a5 
10—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.