88
ON A TRANSCENDENT EQUATION.
[320
and in like manner
sin gd u = ^ i (e'" du — e~ l z Au )
1 /1 4 tan Am 1 — tan kui\
2i \1 — tan \ui 1 4 tan \uii
2 tan \ui sin ui
i (1 — tan 2 \ui) i cos ui ’
or, as these equations may also be written,
sec gd u = cos ui = ^ (e v + e~ H ),
tan gd u = - sin ui = (e" — e~ u );
and from these equations we have
sec gd (u + v) = sec gd u . sec gd v + tan gd u . tan gd v,
tan gd (u + v) = tan gd u. sec gd v + tan gd v . sec gd v ;
or, what is the same thing,
sin gd u 4 sin gd v
sin gd (u 4 v) =
cos gd (u 4v) =
1 4 sin gd u . sin gd v ’
cos gd u . cos gd v
1 4 sin gd u. sin gd v ’
which forms are at once obtainable from the formulae
sin am u cos am v A am v 4 sin am v cos am u A am u
3!