122
ON DIFFERENTIAL EQUATIONS AND UMBILICI.
[330
or, what is the same thing,
dx dv — du dv
But
where
4- — — 0.
x v — u v — u
b (v 2 — 1) + 2 fv
v — u = v 4— — — —
V
c (y 2 — 1) 4- 2gv c (v 2 -1)4- 2gv ’
V = v [c (v 2 — 1) + Zgv] +b‘ 2 (v — I) + 2fv
= (6 + cv) (v 2 — 1) + 2 (/+ gv) v,
and the differential equation takes thus the form
dx dv — du [c (v- — 1) + 2gv] dv
+ ■
x v — u
0;
and hence, writing
and
V=(b + cv) (v 2 —1)4-2 (/4- gv) v = c (v — a.) (v — /3) (v — y),
c (v 2 —1)4- 2gv _ c (v 2 — 1) 4- 2gv
V
ABC
= 1 1
c {v — a) (v — /3) (v — 7) v — a v — /3 v — 7 ’
so that
A =
c (a 2 -1)4- 2ga
c (a 2 - 1) 4- 2goc+ 2 {f+(b + g)u + ccL 2 } ’
with the like values for B and C—values which are such that A 4- B 4- C = 1
integral equation is
const. = x (v — u) (v — a)~ A (v — ¡3)~ B (v — y)~ c ,
or
, substituting for v — u its value, = ——-,
5 ’ c(v 2 -l) + 2gv
But
const. = x {c (v 2 — 1) 4- 2gv}~' (v — a) l ~ A (v — ¡3) l ~ B (v — 7) 1 ~ c .
- (/+ gu) -*JU m
v =
b + cu
if for shortness U=(b + cuf 4- (/4-gu) 2 , and thence
2 _ 2 (/4- gu) 2 + (b + cu) 2 + 2 ( f+ gu) V U
(b + cu?
and
c (v 2 — 1) 4- 2gv =
2 (cf- bg) (/4- gu + 'dU)
v — a
(b 4- cu) 2
_ — (/4- gti) — V U — a (b 4- cu)
b 4- c u.
, &c.
,—the