v (v 2 + 2 m — 1) 2 m - Id 2m -1 d 2 + 2m — 1 v v + i V 2m — 1 v — i V 2m — 1
giving
=
D n _ m
2 m- 1’ 2m-1'
The integral equation thus is
2m m-1
const. = (m« — VO) -1 (m# + V[Ij) 2m_1 |(m«+ i V2m — 1t/+VD)( m# — i V 2m — T y + VG )} 2m 1
where □ = m 2 x 2 + ?/ 2 ; or, observing that
{mx + i V2m — 1 y + VD) (m* — i V2m — 1 y + VD)
= {mx 4- VO) 2 + y 2
= 2m {mx? + y 2 + x V □),
the integral equation is
1 m—1
const. = {mx + VO) 2 — 1 {mx? + y 2 +x VD) 2m-1 ,
or, what is the same thing,
const. = {mx + VG) {mx 2 + y 2 + x VCD)” 1-1 ,
the result given in the former part of the present paper.
VI.
I annex the following a posteriori verification of the solution
const. = {mx + V □ ) {mx 2 + y 2 + x V □ ) m—1
of the particular equation
y {p 2 — 1) + 2mxp = 0.