Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

[339 
ON SKEW SURFACES, OTHERWISE SCROLLS. 
197 
339] 
he form 
so that we have 
w) as weight 
yz + 8w) b □ is 
6, = (Weight 
z, w) of the 
it is easy to 
or, as regards the first two lilies, 
We then find 
2a = 2(q — 3)—%(q — 3)(q — 2) + 2(p — 3) — %(p—3)(p — 2), 
= (i>-2)(?-3) + i(?-3)(2-2)+(2-2)(^-3) + |(^-3)Q?-2), 
2a 2 = 4>(q-3)-4.%(q-3)(q-2) + £(q-3)(q-2)(2q-5) 
+ 4(p-3)-4.±(p-3)(p-2) + ±(p-3)(p-2) (2\p - 5), 
2a* = 8(2-3) —12.i(<?-3)(<? - 2) + 6 . % (q-3) (q - 2) (2q - 5) - ± (q - 3)>(q - 2)> 
+ 8(p-3)-12.^(p-3)(p-2) + 6.i(p-S)(p-2)(2p-5)-l(p-3) 2 (p - 2) 2 , 
2aa' = 2(p — 2)(q — 3) — {p—4t).^{q — 3) (q — 2) — ^ (q — 3) (q — 2) (2q — 5) 
+ 2(q-2)(p-3)-(q - 4) . | (p - 3) (p - 2) - ±(p - 3) (p - 2) (2p - 5), 
2a 2 a' = 4{p-2){q-3)-4{p-3).^(q-3\q-2)+{p-Q).^{q-3){q-2){2q-h) + l(q-3f(q-2)\ 
+ 4(q-2)(p-3)-4(q-3)±(p-3)(p-2)+(q-6)±(p-3)(p-2)(2p-o)+l(p-3)Xp-2)\ 
ZA = i (p + q - 5 ) (p + 9. - 4 )> 
the terms by 
O, y, z, w), 
and weight 
2^. 2 = — 2AA' = i (p 4- q - 5) (p + q - 4) (2p + 2q - 9), 
2.4 3 = — tA 2 A' = i (p + q — 5) 2 (p + q — 4) 2 > 
which, putting therein p + q = a, pq = /3, and from the reduced expressions obtaining the 
values of 2a/3, &c., give 
2a = /3 — | a 2 + | a —18, 
2a 2 = /3 (— a + 9) + £ a 3 — § a 2 + i|i a — 58, 
“ A “ 6 + U a 5 - ^1r a4 + -fi 1 « 3 ~ m 2 - “ 2 + 1071a - 1560,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.