[341
(a.v)#,
341] ON THE SEXTACTIC POINTS OF A PLANE CURVE.
But we have, former memoir, Nos. 21 and 25,
d 2 H = -H<$>VH
m — 1 m — 1
?rH=- ( 3m ~ 6 > ^ _7) wii- ^ a,
(m — 1)- (m — 1) (m — l) 2
so that the foregoing expression becomes
= (S^ f_(8m ~ 16)OT5ir+f&si;rvif
- ( - 3m 6) (S ” 1 7) ffd>air+1 4 &3irv h — T iiair
m — 1 m — 1 m — I
— — (6m —12) tf 2 03>}
A s
+ № <? ■ V) H - m7.H\;
or finally
0 4 Udjl + 20 3 Ud,H + 20 2 Ud 3 H =
7 ——{(— 6m 2 + 18m — 12) H 2 d<& + (— 17m 2 + 60m — 55) HQdH)
(m — l) 4 1
+ {(2m - 2) H (0 . V) H + (8m - 16) dH'V H)
(m —l) 4t
33. Calculation of dJJd 3 U.
This is
^ 4
(m — 1)
HdH.
237
Article Nos. 34 and 35.—The Jacobian Formula.
34. In general, if P, Q, R, S be functions of the degrees p, q, r, s respectively,
we have identically
t-. /-* n „U = Q,
pP,
qQ,
rR,
sS
d x P>
dxQ,
d x R,
d x S
d y P,
d y Q,
dyRy
d y S
dzP,
d z Q,
d z R,
d z s
or, what is the same thing,
pP Jac. (Q, R, S) — qQ Jac. (R, S, P) + rR Jac. (S, P, Q) -- sS Jac. (P, Q, R) — 0.