Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

341] 
ON THE SEXTACTIC POINTS OF A PLANE CURVE. 
239 
Article Nos. 36 to 40.—Proof of equation (0.V) H= Jac. (U, H, Ф), 
used in the second transformation. 
36. We have 
V =(5i, fi, v~$d x , d y , d z ) 
= № + % + ©0„ $д х + Щ + %д г , @0 я + ^+едх, fi, v). 
Also 
Э = (Bv — Cfjb) д х + (C'A — Av) д у + (Afi — ВХ) d z 
== ХР 4- fiQ -f- vR, 
if for a moment P, Q, R = Gd y -Bd z , Ad z -Cd x> Bd x -Ad y . 
Hence 
0 . V = (PX + Qfi + Rv) . (210* + ЬЬу + ®0 г , £0* + 530, + ЪЬг, ©Э* + %д у + (ВДА, fi, v), 
viz. coefficient of A 2 
= pm x +p$d y + p®d z , 
and so for the other terms ; whence also in (0. V ) H the coefficients of X 2 , &c. are 
(рт х +р$д у +р®д г )н, &c. 
37. Again, in Jac. ( U, H, 4>), where <f> = (21, 23, (£, $, @, >£)$A, ¡i, v) 2 , the coefficients 
of A, 2 , &c. are Jac. (U, H, 2(), &c. ; and hence the assumed equation 
(0 . V ) H = Jac. ( U, H, Ф), 
in regard to the term iu A 2 , is 
(P210* + P$d y + Р@0 г ) H = Jac. ( U, H, 21), 
and we have 
Jac. (U, H, 21) = 
A , B , G 
д х Н, д у Н, d z H 
21 
= [д х Н (Сд у - Вд г ) + д у Н (Ад г - Gd x ) + д г Н (Вд х - Аду)] 21, 
= (д х Н. Р + д у Н. Q + д г н. R) 21 ; 
so that the equation is 
P№ X H + PftdyH + P®d z H, 
= P№ X H + QAd y H + RW Z H, 
or, as this may be written, 
[(50, - Gd y ) $ - (Gd x - Ad z ) 21] d y H 
+ [(Bd z - Gdy) © - (Аду - Bd x ) 21] d z H = 0.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.