341]
ON THE SEXTACTIC POINTS OF A PLANE CURVE.
239
Article Nos. 36 to 40.—Proof of equation (0.V) H= Jac. (U, H, Ф),
used in the second transformation.
36. We have
V =(5i, fi, v~$d x , d y , d z )
= № + % + ©0„ $д х + Щ + %д г , @0 я + ^+едх, fi, v).
Also
Э = (Bv — Cfjb) д х + (C'A — Av) д у + (Afi — ВХ) d z
== ХР 4- fiQ -f- vR,
if for a moment P, Q, R = Gd y -Bd z , Ad z -Cd x> Bd x -Ad y .
Hence
0 . V = (PX + Qfi + Rv) . (210* + ЬЬу + ®0 г , £0* + 530, + ЪЬг, ©Э* + %д у + (ВДА, fi, v),
viz. coefficient of A 2
= pm x +p$d y + p®d z ,
and so for the other terms ; whence also in (0. V ) H the coefficients of X 2 , &c. are
(рт х +р$д у +р®д г )н, &c.
37. Again, in Jac. ( U, H, 4>), where <f> = (21, 23, (£, $, @, >£)$A, ¡i, v) 2 , the coefficients
of A, 2 , &c. are Jac. (U, H, 2(), &c. ; and hence the assumed equation
(0 . V ) H = Jac. ( U, H, Ф),
in regard to the term iu A 2 , is
(P210* + P$d y + Р@0 г ) H = Jac. ( U, H, 21),
and we have
Jac. (U, H, 21) =
A , B , G
д х Н, д у Н, d z H
21
= [д х Н (Сд у - Вд г ) + д у Н (Ад г - Gd x ) + д г Н (Вд х - Аду)] 21,
= (д х Н. Р + д у Н. Q + д г н. R) 21 ;
so that the equation is
P№ X H + PftdyH + P®d z H,
= P№ X H + QAd y H + RW Z H,
or, as this may be written,
[(50, - Gd y ) $ - (Gd x - Ad z ) 21] d y H
+ [(Bd z - Gdy) © - (Аду - Bd x ) 21] d z H = 0.