246 ON THE SEXTACTIC POINTS OF A PLANE CURVE. [341
Article Nos. 51 to 53.—Proof of identity used in the fourth transformation, viz.
Jac.(U, V, H)H=-EV, or say Jac. {U, H, V)tf = (02l, B', CJ.
51. We have
V = ((Si, @,£X, ft v), (§, 8, ft, v), (@, g, ft v)ldz, d„ a,),
and thence
0*- V =((9*21, 0*4?, 0z@$X, y, V), (0*4?, 0«;23, 0*5$X, y, V), (0*@, d x %, d x (f$\, fji, v)Jd x , dy, d z ),
and
(0*. V)H = ((0*21, 0*4?, 0*®][X, /a, v), (03,4?, 0*23, 0*5#X, /A, v), (0*@, 0*5, 0*@#X, /a, v)\A\B', C'),
with the like values for (d y . V) H and (d z . V) H. And then
Jac. (17, H, V)iT =
A , B , C
A' , B' , O'
(0*.V)i7, (d y .V)H, (0 2 . V)H,
in which the coefficient of A’ 2 is
= (Cdy-Bd z ) (21, £, @$X, /A, *);
or putting for shortness
(Cd y -Bd 2 , A02-<70*, P0*-A0j,) = (P, Q, A);
the coefficient is
52. We have
(P21, P4?, P©#X, /A, *,).
0 = (PX + Qy + ifo),
and thence
coefficient A' 2 — 021 = (P21, P4?, P@£x, /a, *) - (P2(, Q2i, P21&X, /a, *)
= ft 81)
+ V {(Cdy - Bd z ) <8-(Bdz- 5IS„) aj,
where coefficient of fi is
= - Ad£\ — Bd z $ + C (0*21 + 01,4?)
and coefficient of v is
= - (A0*2[ + Bd£ + G®*®) = - ^-=-- xd z H,
= + (Ad y 9t + Bdy$ + Cdy®)= ^ x xdyll,
so that
coefficient A' 2 — 021 = — x (ud,H — vd v H).
to — 1