*252
ON THE SEXTACTIC POINTS OF A PLANE CURVE.
[341
or since
this is
VU = -^—H, У 2 £7=ЯФ,
m— 1
л „ tj m U , . , 'à 2 rT . ,
371/ = 7 ^ Ф- + Г г 2 ЯФ.
(m — l) 2 (m — 1)-
64. We have 0,0 2 Z7 = 0, and thence
that is
(№ + 3,03 + 02) U=0,
0103 U — — 0 1 2 0 2 U — 0 2 2 U ;
or substituting the values of didJJ and d.?U, we find the value of d-^.U as given in
the Table. And then from the equation
(3/ + 6320., + 43,03 + 302 -t- 3 4 ) U = 0,
or
d 4 U=- (32 + 63200 + 40,03 + 30 2 2 ) U,
we find the value of d 4 U, and the proof of the expressions in the Table is thus
•completed.
65. Proof of equation V . 3 = 0.
We have
V . 3 = V . ((Bv — С/л) d x + ((7л, — Av) Эу + (Л/л — BX) d z )
= V . (A (jxd z — vd y ) + В (vd x — Л2 г ) + С (Хд у — gd x ))
= V A (ftd z — vdy) + V В (vd x — Xd z ) + V С (X8 y — цд х );
nnd then
VA=(2l, ...$\ /л, v][a, h, g) = HX,
vs= (21, /a, v$h, h, f) = Hfi,
VG = (21, g, v\g, /, c) = Hv;
or substituting these values, we have the equation in question.
66. Proof of the expression for 3 3 .
We have
d* = - w _ ! Ф + Уду + *9*) + j V;
■and thence operating on the two sides respectively with 3,, =3, we have
0 3 = - ?j 22Ti + y^y + zd z ) + ФЗ . (жд х + уду + zd z )}
+ —Ц- ШУ + ^3. V};
in — 1