Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

*252 
ON THE SEXTACTIC POINTS OF A PLANE CURVE. 
[341 
or since 
this is 
VU = -^—H, У 2 £7=ЯФ, 
m— 1 
л „ tj m U , . , 'à 2 rT . , 
371/ = 7 ^ Ф- + Г г 2 ЯФ. 
(m — l) 2 (m — 1)- 
64. We have 0,0 2 Z7 = 0, and thence 
that is 
(№ + 3,03 + 02) U=0, 
0103 U — — 0 1 2 0 2 U — 0 2 2 U ; 
or substituting the values of didJJ and d.?U, we find the value of d-^.U as given in 
the Table. And then from the equation 
(3/ + 6320., + 43,03 + 302 -t- 3 4 ) U = 0, 
or 
d 4 U=- (32 + 63200 + 40,03 + 30 2 2 ) U, 
we find the value of d 4 U, and the proof of the expressions in the Table is thus 
•completed. 
65. Proof of equation V . 3 = 0. 
We have 
V . 3 = V . ((Bv — С/л) d x + ((7л, — Av) Эу + (Л/л — BX) d z ) 
= V . (A (jxd z — vd y ) + В (vd x — Л2 г ) + С (Хд у — gd x )) 
= V A (ftd z — vdy) + V В (vd x — Xd z ) + V С (X8 y — цд х ); 
nnd then 
VA=(2l, ...$\ /л, v][a, h, g) = HX, 
vs= (21, /a, v$h, h, f) = Hfi, 
VG = (21, g, v\g, /, c) = Hv; 
or substituting these values, we have the equation in question. 
66. Proof of the expression for 3 3 . 
We have 
d* = - w _ ! Ф + Уду + *9*) + j V; 
■and thence operating on the two sides respectively with 3,, =3, we have 
0 3 = - ?j 22Ti + y^y + zd z ) + ФЗ . (жд х + уду + zd z )} 
+ —Ц- ШУ + ^3. V}; 
in — 1
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.