5. To complete the theory it is proper to calculate the inverse coefficients
21,
2
23,
g,
9JÎ
©,
g ,
2,
m,
9?,
?
-AF--BG
9
X
—
(Ad 4
1
abed 3
+
6
ac 3 d 2
—
4
b 3 æ
—
16
W
+
39
bàd
—
36
c 6
+
12
which, omitting the factor 9, is
= 3 (ad- — 3bed + 2c 3 ) 2 — 4d? (ard 2 — (ktbed + 4ac 3 + 4b 3 d — 3b' 2 c 2 ),
that is = 3 TT r2 — 4cZ 2 C7 ; and calculating in like manner the other coefficients, the system
is found to be
3X 2 -4a'U , 3XY -4>abU , 3XZ + (2ac — №) U, 3XW+ (5ad- %c) U,
3YX -4>abU , 3F 2 -4acU , 3YZ -(lad+3bc) U, 3YW + (2bd — 6c 2 ) U,
3ZX +(2ac-6b 2 )U, 3ZY ~(lad + 3bc)U, 3Z 2 -4bdU , 3ZW -4cdU
3 WX + (5ad - 9be) U, 3 WY -f (2bd - 6c 2 ) U, 3 WZ - 4<cd U, , 3 W 2 - 4d 2 U
6. Let (X, p, v, p) be any arbitrary multipliers, and write
21,
4?,
©,
2 fi, v, p),
23,
g,
m
©,
g,
®,
2,
m,
9î,
23