Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

344] 
ON CERTAIN DEVELOPABLE SURFACES. 
281 
30. This divides, as it should do, by 
a 3 e 3 
J- 1 
a 2 bde 2 
- 12 
a 2 d 4 
- 27 
ab 2 d 2 e 
- 6 
b 4 e 2 
- 27 
b 3 d 3 
- 64 
-135 
and the other factor, which is the Prohessian, is 
al'e;' 
+ 
1 
a 4 bde 4 
+ 
16 
a 4 d 4 e 2 
— 
108 
a 3 b 2 d 2 e 3 
— 
524 
a 3 bd B e 
_ 
432 
a 2 b 4 e 4 
— 
108 
a 2 b 3 d 3 e 2 
+ 
656 
a 2 b 2 d e 
+ 
1512 
alfdd' 
— 
432 
ab 4 d 4 e 
+ 
272 
b e <Pe 2 
+ 
1512 
b 5 æ 
4- 
1280 
+ 3645. 
31. To simplify this, I first collect the six terms 
— 108 are- (a 2 d 4 +b 4 e 2 ) 
— 432 abde (a 2 d 4 + b 4 e 2 ) 
+ 1512 b 2 d 2 (a 2 d 4 + b 4 e 2 ), 
and then putting a 2 d 4 + b 4 e 2 = (ad 2 + b 2 e) 2 — 2ab 2 d 2 e, we have the terms 
+ 216 a 3 b 2 d 2 e 3 
+ 864 a 2 b 3 d 3 e 2 
— 3024 ab 4 d 4 e, 
which combined with the remaining terms give 
+ 1 a 5 e 5 
+ 16 a 4 bde 4 
— 308 a 3 b 2 d 2 e s 
+ 1520 a 2 b 3 d 3 e 2 
— 2752 ab 4 d 4 e 
+ 1280 b 5 d 5 ; 
C. V. 
36
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.