349]
ON A CASE OF THE INVOLUTION OF CUBIC CURVES.
325
Article Nos. 33 to 38, relating to the Tangents at a Node or Critic Centre.
33. I proceed to investigate the equation of the tangents at the node of the curve
xyz + k (x + y + zf (Xx + fiy + vz) = 0 ;
it will be recollected that if x, y, z are the coordinates of the node, then we have
cc : y : * : cc + y + z : + W + g 1 —: I :1-
Representing for a moment the equation of the curve by U = 0, then the second
derived functions of U are
k . 2 (Xx + fiy + vz) + 4k(x + y + z) A,
k . 2 (Xx + /u,y + vz) + 4k (x + y + z) ¡i,
k. 2 (Xx + ¡iy + vz) + 4k (x + y + z) v,
x + k . 2 (Xx + gy + vz) + 2k (x + y + z) (/a + v),
y -\-k . 2 (Xx + fiy + vz) + 2k (x + y + z) (v + A),
z + k. 2 (Xx + ¡zy + vz) + 2k (x -1- y z) (A + /a),
or calling these (a, h, c, f g, h) respectively, and substituting the values x =
we find
07 8&A 2 k /n
a — 2k -|—Q-, — ~0 (Q + 4A),
1
0+1
&c.,
with the like values for b, c; and
j, 1 ^. 4k . . 2k ( 0 1 a a a \
f=e + \ Jr * k+ T (fi+v)= T\eTx. 2A + fl + 2 '‘ +2 ")’
where the term in ( ) is
6 (6 + A) (6 + /a) (6 + v)
0 + X' -10 2
+ 0 + 2 g + 2v,
— 2 (6 + /a) (6 + v)
0
+ 0 + 2/a + 2 v,
26-2g-2v- 2f ^+0 + 2y, + 2v,
= — 0 —
’¿¡JbV
NT’
that is