328
ON A CASE OF THE INVOLUTION OF CUBIC CURVES.
[349
from which we obtain
a : b : c : / : g : h
= 2yz (— x + 2y + 2z)
: 2zx( lx— y + z)
: 2xy{ 2x + 2y — z)
: — x ( x 2 — y 2 — 2 2 + 4i/^)
: — y (— x 2 + y 2 — z 2 + 4zx)
: — z (—x 2 — y 2 + z 2 + 4xy),
which are the required new forms.
38. We have
be — f 2 = 4x 2 yz (2x — y + z) (2x + 2y — z) — x 2 (x 2 —y 2 — z 2 + 4<yz) 2
= (x + y + z) 2 (x 2 + y 2 + z 2 — 2 yz — 2zx — 2 xy),
which is =0, if x + y + z = 0, or if x 2 —2x(y + z) + (y — z) 2 = 0. In the former case, viz.
if x + y + z = 0, we find a = b = c —f = g = h = — Qxyz, and therefore
(a, b, c, f, g, K$x, y\ z') 2 = - Qxyz (x + y' + z') 2 ,
but this corresponds merely to the value k = oo, for which the cubic is
(x + y + z) 2 (\x + gy + vz) = 0,
which is not a proper cuspidal curve. In the latter case, or where
x 2 + y 2 + z 2 — 2 yz — 2 zx — 2 xy = 0,
or, what is the same thing, *Jx-\-\ly-\-\/z= 0, we have a proper cuspidal curve.
Article Nos. 39 to 43, relating to the Triangle of the Critic Centres.
39. The equation
MG , fiy ,
01 -j- A. 0i 4* /A t?i + v
is satisfied by substituting therein
111
1 1 1
x ■ y ■ z e,+x ' e,+n '■ e 2 +v
x : y : z =
, or X \ y \ z = -i
0 3 + A 0 3 -\- fi 0 3 + v
in fact, for the first set of values the equation becomes