332
ON A CASE OF THE INVOLUTION OF CUBIC CURVES.
[349
where the value in question ior X 73—--r is most readily found from the identical
\“i "f a*/
equation
X ¡x v _ d 3 — 0 (/xv + v\ + X/x) — \/xv
0 + \^~0 + /X~^0-\-V ©
by differentiating and then writing 6 — 0 X .
Second term is
2/u.z/'
= - w t(e l+ x)(e 1 + f),
= - ~ 2 (<?, s + Xff, + 2/lv + ,
6\fXV
— + (X + [x + v) 0 X + 2 (/xv + v\ + \fx) + q
Whole is = ^- multiplied into
~0 ©1 + 3 {S0 X 2 — ([XV + v\ + XyU.)]
— 2 jsdi 2 (X + [x + v) 0 X + 2 (/xv + v\ + \fx) 4-
5
= -q {d/ — ([xv + z>X + \/x) 0 X — 2X[xv),
which is = 0.
46. We have next
coeff. X Y = (0 X + 4X,., ., — 6 1 —
2 ¡xv
1
_ v.
' ?, + 4X _S(> + 2/w '
0 X / V^I + X 0\ + /•*•’ 0i + vj \ 0-i 4- X ’ 0. 2 4- [x 0., + v
1 1
(0 X 4 X) (d 2 + X)
+
0, ) 1(01 + /1) (0, + vy (0! + v) (0, + X)j •
First term is
— V 1 4. qv ^
w 0 2 + X^ (0 1 + X)(0 2 + \)’
= v L_ 4. 3 V [ ^ ^ \
~ d,+x^0 1 -e,\0 1 +x 0 2 +\)’
since