349]
ON A CASE OF THE INVOLUTION OF CUBIC CURVES.
335
49. We have now to find the coefficients of F 2 and Z*.
coeff. + ¿X
2fj,v
= X-5 + 4X -2X ^ +
(0 2 + A) 2 (0 2 + /a) ($2 + z>)
^o.-^+^+éx ,+ 0, a, + i+ 0 S
(02 + A)“
and observing that the terms
2 h ^
(d 2 + /i) (0 2 + v)
2/iv
(0 2 + A) 2 (0 2 + ya) (0 2 + v)
only differ from those of coeff. X 2 by having 0 2 in the place of 6 r and are therefore
= 0, we have
a n ,fyv_2fxv
01-6* ^ 1 2 0i 02
coeff. F 2 = X
( 0 2 + A) -
-2X
(0 2 + /A) (0 S + V)
I 1
= (8,-8,) 1 S.„ .'.-22
1 -
2 fxv }
0i02
V (0 2 + A) 2 (0 2 + (0 2 + v) ^
Here
-1
+
(0 2 + A) 2 ((02 + A) (0 2 + X) (02 + A) (0 2 + v) 0. 2 (0 2 + A)
= 0- X |— (0 2 + V) — (0 2 + fl) + 0- (0 2 + (0 2 + l>) j ,
1 V ( _L
= ®, 2 r +!,+ x
^{ 2( x + , + ,,) + 2 ^ + V},
and
2X
_ Zjiv
0A 2 s
(0 2 + yaf (0 2 + v) ©2
= - @T ^ I 02 + X
( 1_ |a) ( ^ +x) ’
2/u.y 2A/ai>
(
2
@2
30 2 + A + /a + v
0i 0AJ*
2 (/iv + v\ 4- A¡x) 6A/jlv
0i
0A j ’