Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

349] 
ON A CASE OF THE INVOLUTION OF CUBIC CURVES. 
335 
49. We have now to find the coefficients of F 2 and Z*. 
coeff. + ¿X 
2fj,v 
= X-5 + 4X -2X ^ + 
(0 2 + A) 2 (0 2 + /a) ($2 + z>) 
^o.-^+^+éx ,+ 0, a, + i+ 0 S 
(02 + A)“ 
and observing that the terms 
2 h ^ 
(d 2 + /i) (0 2 + v) 
2/iv 
(0 2 + A) 2 (0 2 + ya) (0 2 + v) 
only differ from those of coeff. X 2 by having 0 2 in the place of 6 r and are therefore 
= 0, we have 
a n ,fyv_2fxv 
01-6* ^ 1 2 0i 02 
coeff. F 2 = X 
( 0 2 + A) - 
-2X 
(0 2 + /A) (0 S + V) 
I 1 
= (8,-8,) 1 S.„ .'.-22 
1 - 
2 fxv } 
0i02 
V (0 2 + A) 2 (0 2 + (0 2 + v) ^ 
Here 
-1 
+ 
(0 2 + A) 2 ((02 + A) (0 2 + X) (02 + A) (0 2 + v) 0. 2 (0 2 + A) 
= 0- X |— (0 2 + V) — (0 2 + fl) + 0- (0 2 + (0 2 + l>) j , 
1 V ( _L 
= ®, 2 r +!,+ x 
^{ 2( x + , + ,,) + 2 ^ + V}, 
and 
2X 
_ Zjiv 
0A 2 s 
(0 2 + yaf (0 2 + v) ©2 
= - @T ^ I 02 + X 
( 1_ |a) ( ^ +x) ’ 
2/u.y 2A/ai> 
( 
2 
@2 
30 2 + A + /a + v 
0i 0AJ* 
2 (/iv + v\ 4- A¡x) 6A/jlv 
0i 
0A j ’
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.