Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

498 
[370 
370. 
ON THE SIGNIFICATION OF AN ELEMENTARY FORMULA OF 
SOLID GEOMETRY. 
[From the Philosophical Magazine, vol. xxx. (1865), pp. 413, 414.] 
i 
The expression for the perpendicular distance of a point (x, y, z) from a line 
through the origin inclined at the angles (a, ¡3, y) to the three axes respectively, is 
p 2 — x 2 + y 2 -f z 2 — (x cos a + y cos /3 + z cos y) 2 
= (y cos y — z cos ¡3) 2 
+ (z cos a — x cos y) 2 
4- (x cos ¡3 — y cos a. ) 2 ; 
and the remark in reference to it is that, if at the given point P we draw, perpen 
dicular to the plane through P and the given line, a distance PK equal to the 
distance of P from the given line, then the expressions 
y cos y — z cos ¡3, z cos a. — x cos y, x cos ¡3 — y cos a, 
which enter into the preceding formula, denote respectively the coordinates of the point 
K referred to P as origin. 
If the given line instead of passing through the origin pass through the point 
x 0 , y<>, z 0 , then the corresponding expressions are of course 
(y — yo) cos y — (z — z 0 ) cos /3, (z — z 0 ) cos a — (x — x 0 ) cos y, (x — x 0 ) cos ¡3 — (y — y 0 ) cos y, 
and if we denote the “ six coordinates ” of the given line, viz. 
cos a, cos ¡3, cos y, y 0 cos y — z 0 cos /8, z 0 cos a — x 0 cos y, x 0 cos /3 — y 0 cos y, 
b y 
a , b , c , f , g , h
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.