Axial System of the Dodecahedron and Icosahedron.
angle
Distances
angle
Azimuths
cosA
cos Y
cos Z
Rot. Symbols
cos
sin
cos
sill
1
6 5-axes, ¿Rot. angle =36°, cos =
Vs + l . V(!0 - 2 Vô)
~ 4 ’ 8in 4 *
31°44'
2
Vo - 1
0°
1
0
Vs -1
+ 2
Vs+1 Vs -1 .
—T +—r-* + 4*
v/(10-2n/5)
V(io - 2 VS)
V(i0- 2V5)
0
V(10-2Vs)
9 9
”
>5
180°
-1
0
-
9 9
+ 99
VS+i VS-i. ,,
4 - 4 * + i*
58°17'
V(10 - 2 Vs)
2 Vo
V(10 + 2V5)
2 V 5
90°
0
i
0
VUO + 2V5)
+ 2 V3
+ V(10-2V5)
2 VS
•n/ö +1 1 . — 1
-r- + *' + -r-*
9 9
»
99
270°
0
-i
..
~ 99
+ >>
\^5 +1 , . \/'5 — 1 7
“4 iJ+T-*
90°
0
1
31°43'
( V(10 + 2Vo)
VU0-2V5)
( V(10 + 2 VS)
2 VS
V(io - 2 Vs)
2s^5
0
Vs +1 .. VS -1.
2 V5
2 V5
4 + i ,+ 4
99
99
99
148°17'
-
+ >>
9 9
+
”
VS+i ,. VS-i.
~T~ -> 1+ - A~- 1
10 3-axes, g Rot. angle =
60°, cos=£, sin =
WS.
5 4° 44'
1
Vb
V2
Vb
45°
1
Vi
1
+ V2
1
+ Vb
+ A
Vb
!
+ Vs
h (1+i+j+k)
”
>>
»»
135°
9 9
- ,,
+ „
+ ))
a (1 ~ * +j + k)
99
»
”
225°
- >’
- »
- »
- ,,
+ ,,
h(l-i-j + k)
”
VS+1
VS-i
315°
+
- >.
+
- „
+ 99
2 (1 + * —j + k)
20°55’
90°
0
1
0
Vs -1
VS+i
. VS -1. VS +1 ,
2\/3
2 V3
+ 2V3
+ 1—
2V3
i + — Í+-4- 1 '
”
”
» »
270°
0
- 1
0
99
+ „
, VS-i. VS+i,
i- 4 3 + 4 h
69°5'
VS-1
2 Vs
VS + i
2 Vb
0°
1
0
VS+i
+ 2V3
0
V5 — 1
+ T=
2 Vb
VS+1. Vs — 1,
è+ 4 Í+ 4 k
99
99
»
180°
- 1
0
- ”
0
+ »
, VS+i. VS-i,
■ \—— l+—^-k
90°
0
i
69°5'
V5-1
+ ivf
+ Vs+i
2 Vb
VS-i
+ 2 VS
VS+i
2 VS
0
. . Vs-i., VS+i .
i+—. + —J
”
’’
9 9
110°55'
- »
+ 99
~ 9 9
+ „
0
. VS-i. VS+i.
2- -4-* + — J
CO
■Ni
Cn
534 NOTES ON POLYHEDRA.