A =
U, U'
a, a
, P =
B =
U, U'
b, b'
, Q =
c =
U, U'
c, c'
, R =
D =
U, U'
, s =
d, d'
NOTE ON BEZOUT’S METHOD OF ELIMINATION
[From the Oxford, Cambridge and Dublin Messenger of Mathematics, vol. II. (1864),
pp. 88, 89.]
Let U, U' be any two rational and integral functions of x of the same order;
to fix the ideas let them be the cubic functions
U = ax? + bx 2 + cx + d,
U' = a'x 3 + b'x? + c'x + d!.
Write
a, a
U , U'
ax + b, a'x + b'
U , U'
ax 2 + bx + c, a'x 2 + b'x + c
Ü , U'
ax 3 + bx 2 + cx + d, a'x 3 + b'x? + c'x + d'
P=A,
Q = Ax + B,
B = Ax 2 + Bx + C,
S = Ax 3 + Bx 2 + Cx + D, =0,
then we have