[383
383]
PROBLEMS AND SOLUTIONS.
605
y)
nstruct,
b that
hat an
8, and
square,
tieorem
erefore
I. The
n : the
rishes.}
of the
meters
Solution by Professor Cayley.
Let the given line be taken for the axis of z; the axes of x, y being any
rectangular axes in the plane perpendicular thereto ; the equations of the given line
are therefore (« = 0, y = 0). Take (a,, ft, Yi), (a,, ft, y 9 ), («*, ft, y 3 ), («4, ft, 74) for the
coordinates of the points A, B, G, D respectively; and (0, 0, eft (0, 0, c 2 ), (0, 0, eft (0, 0, c 4 )
for the coordinates of the points a, b, c, d respectively. Then, to determine Cj, the
equation of the plane BCD is
«, y ,
•2 ,
1
a.,, ft,
72,
1
«3, ft,
73,
1
®4 , ft,
74,
1
and cutting this by the line x = 0, y = 0, we have
^ 0 , 0 , Ci,
«2, ft, 72,
«8» ft, 73,
! a 4 , ft, 74,
with similar equations for c 2 , c 3 , c 4 respectively. The four equations may be united into
the single equation
CiPit
1,
«1,
ft
=
pi,
«1,
ft,
7i 1
c,p,,
1,
«2,
/3.
P-2,
«2,
ft,
72 ;
\ C 3 p 3 ,
!
1,
«3,
ft
p3,
«3,
ft,
73
Cipi,
1,
«4,
ft
Pi,
«4,
ft,
74
where p 1} p 2 , p 3 , pi are arbitrary multipliers. Hence, writing successively (p 1 , p. 2 , p 3 , p 4 )
= (1, 1, 1, 1) and (pi, p 2 , p 3 , pi) = ( 7 i, 72, 73, 74), we have first
that is
^1)
1,
«1,
ft
=
1,
«1,
ft,
7i
C*>
1,
«8,
ft
1,
«2,
ft,
72
C.3)
1,
«8,
/ft
1,
«3,
ft,
73
C4)
1,
«4,
ft
1,
Ä4,
ft,
74
1,
«1,
ft,
Cl
+ 7i
= 0
1,
«2,-
ft
c 2
+ 7.4
1,
«3,
ft
C3
+ 73
1,
*4,
ft,
C4
+ 74