Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

606 
PROBLEMS AND SOLUTIONS. 
[383 
and secondly, 
that is, 
Ci7i, 
1, 
«i, 
A 
= 
7i, a i, 
A, 
7! 
1, 
a 2 , 
A 
72, «2, 
A, 
72 
C 3 73> 
1, 
«3, 
A 
78, «3, 
A, 
73 
C474» 
1, 
a 4 , 
A 
0^4? ^4> 
A, 
74 
1, 
«n 
A, Ci 7! 
= 0; 
1, 
a 2, 
A, C 2 7-_, 
1, 
a 3 , 
A, c 3 7 3 
1, 
«4, 
A, c 4 7 4 
may be 
united 
into the single 
formula 
1, 
«1, 
A 
, Cj + 7!, c 1 y 1 
= 0. 
1, 
a,, 
fi-2, 
C2 + 7.., 
'272 
1, 
a-j, 
A 
. c 3 4- 7 3 , c 3 7 ;i 
1, 
«4, 
A 
C4 + 74, C474 
Now the equation of a sphere having for the extremities of a diameter the points 
(a, /3, 7) and (a, b, c) is 
O - £0 + a)] 2 + [y -\(b + /3)] 2 + [z-$(c + 7 )] 2 = l [(a - a) 2 + (b -/3) 2 + (c - y) 2 ], 
or 
o - a) (x - a) + (y - b) (y-fi) + (z- c) (z-y) = 0, 
or 
x 2 + y- + z 2 — (a + a) x — (b + /3) y — (c + 7) 2 + aa + b/3 + c<y = 0; 
therefore, when the two points are (a, /3, 7) and (0, 0, c), the equation is 
x 2 + y 2 + z 2 — olx — (3y — (c + 7) £ + cy = 0. 
Hence, putting for shortness P = — ax — /3y—(c+^z+cy, viz., Pj = — a^x—{3 x y - {c 1 -\-y l )z+c l y 1 , 
&c., the equations of the four spheres are 
x 2 + y 1 + z- + Pi = 0, x 2 + y 2 + z 2 + P 2 = 0, x 2 + y- + z 2 + P 3 = 0, x 2 + y 2 + z n - 4- P 4 = 0, 
and the four spheres will have a common radical axis, if for proper values of the 
multipliers y, v, p we have 
y (P, -P 2 ) + v (P x - Pa) + P (Pi P 4 ) = 0, 
or what is the same thing, if for proper values of X, y, v, p we have 
XP ! + yP 2 + vP s + pP 4 — 0, 'h. J ry-\'V J rp — 0 ;
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.