606
PROBLEMS AND SOLUTIONS.
[383
and secondly,
that is,
Ci7i,
1,
«i,
A
=
7i, a i,
A,
7!
1,
a 2 ,
A
72, «2,
A,
72
C 3 73>
1,
«3,
A
78, «3,
A,
73
C474»
1,
a 4 ,
A
0^4? ^4>
A,
74
1,
«n
A, Ci 7!
= 0;
1,
a 2,
A, C 2 7-_,
1,
a 3 ,
A, c 3 7 3
1,
«4,
A, c 4 7 4
may be
united
into the single
formula
1,
«1,
A
, Cj + 7!, c 1 y 1
= 0.
1,
a,,
fi-2,
C2 + 7..,
'272
1,
a-j,
A
. c 3 4- 7 3 , c 3 7 ;i
1,
«4,
A
C4 + 74, C474
Now the equation of a sphere having for the extremities of a diameter the points
(a, /3, 7) and (a, b, c) is
O - £0 + a)] 2 + [y -\(b + /3)] 2 + [z-$(c + 7 )] 2 = l [(a - a) 2 + (b -/3) 2 + (c - y) 2 ],
or
o - a) (x - a) + (y - b) (y-fi) + (z- c) (z-y) = 0,
or
x 2 + y- + z 2 — (a + a) x — (b + /3) y — (c + 7) 2 + aa + b/3 + c<y = 0;
therefore, when the two points are (a, /3, 7) and (0, 0, c), the equation is
x 2 + y 2 + z 2 — olx — (3y — (c + 7) £ + cy = 0.
Hence, putting for shortness P = — ax — /3y—(c+^z+cy, viz., Pj = — a^x—{3 x y - {c 1 -\-y l )z+c l y 1 ,
&c., the equations of the four spheres are
x 2 + y 1 + z- + Pi = 0, x 2 + y 2 + z 2 + P 2 = 0, x 2 + y- + z 2 + P 3 = 0, x 2 + y 2 + z n - 4- P 4 = 0,
and the four spheres will have a common radical axis, if for proper values of the
multipliers y, v, p we have
y (P, -P 2 ) + v (P x - Pa) + P (Pi P 4 ) = 0,
or what is the same thing, if for proper values of X, y, v, p we have
XP ! + yP 2 + vP s + pP 4 — 0, 'h. J ry-\'V J rp — 0 ;