Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

Consequently 
64w' (y'z' + z'x + x'y') = (w + x + y + z) 
x {3w 2 — 2iv (x +y + z) — x 2 — y 2 — z 2 + 2yz + 2zx + 2xy), 
64<x'y'z' = (w + x — y — z) (w — x + y — z) (w — x — y — z), 
= w 3 
— iv 2 (x + y + z) 
— w (x? + y- + z 2 — 2yz — 2zx — 2xy) 
+ x 3 + y 3 + z 3 — yz 2 — y 2 .z — zx? — z-x — xy 2 — ary + 2 xyz. 
Putting for shortness 
p = x + y + z, V = x 2 + y 2 + z 2 — 2yz — 2zx — 2 xy, 
the two expressions are 
Sw 3 
+ w 2 . +p 
+ w. — 2p 2 — V 
—p V + x? + y :< + z 3 — y 2 z — yz 2 — z 2 x — zx 2 — x 2 y — xy 2 + 2 xyz 
or observing that -_pV is 
= — x? — y 3 — z 3 + y 2 z + yz 2 + z 2 x + zx 2 + # 2 y + ay/ 2 + 6icyz, 
w 3 
+ w 2 .—p 
— w.V 
we have 
64 iyo'yz + w'z'x + w'xy + x'y'z') 
= 4 w 3 — 2w(p 2 +V) + 8xyz, 
= 4 iv 3 
— 4>iv (x 2 + y 2 + z 2 ) 
+ 8ay/2, 
that is
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.