136
REPRODUCTION OE EULER’S MEMOIR OF 1758
[404
and introducing the auxiliary quantity u such that du = pqrdt, we have
p- = $[ + 2 Lu,
q 2 = 33 + 2 Mu,
r' 2 ~(S +2 Nu,
where 51, 53, 6' are constants of integration, and thence
f du
J V {(81 + 2Lu) (53 + 2Mu)) ((5 + 2Nu) ’
where the integral may without loss of generality be taken from u = 0; u, and
consequently p, q, r, are thus given functions of t\ and it is moreover clear that
Si, S3, (£ are the initial values of p 2 , q 2 , r 2 . We have also if <y be the angular
velocity round the instantaneous axis
or = 21 + 23 + £+ 2 (L + M + N)u.
Euler then assumes that the position in space of the principal axes is geometrically
determined as follows, viz. (treating the axes as points on a sphere) it is assumed
that the distances from a fixed point P of the sphere are respectively l, in, n, and that
D
the inclinations of these distances to a fixed arc PQ are respectively X, p, v. We have
then the geometrical relations
sin (p, — v ) = —
cos 2 1 + cos 2 m + cos 2 n = 1 ;
cos l
whence also
, x cos m cos ii
— •— , cos (/X — v ) = ; r-—,
sm m sin n ' sin m sin n
. , % x cos m / . . cos n cos l
sin h - A) = — .—j , cos (v —\) = ^ —- ,
sin n sin l / sin n sm l
• /. x cos ii cos l cos m
sin (X - p) = . . , cos (X - p,) = . ;
sin l sin m n sin l sm m
sin /x =
cos p, =
sin v =
cos v =
— cos X cos 11 — sin X cos l cos 111
sin l sin m
sin X cos n — cos X cos l cos 111
sin l sin m
cos X cos m + sin X cos l cos n
sin l sin n
— sin X cos m — cos X cos l cos n
sin l sin 11