Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

141 
404] 
ON THE ROTATION OF A SOLID BODY. 
so that p, v are determined in terms of j and <£. These expressions give 
d<f> = y “j n a • { cos ^ (qdr — rdq) + cos m (rdp —pdr) + cos w (pcZ(? — qdp)}, 
which is reducible to Eulers equation 
7, _ 7,(Mg — MB)cosZ + </(iVSl — Zg)cosm + r(Z33 — MSI)cosw 
9 E-2LMNu -E ’ 
and thence, substituting for cos Z, cos ra, cos n their values, and observing that 
Ap* (Mg - m) + B(J 2 + Gr , = _ (// _ 2LMNFu), 
BCf- (Mg - mb) 2 + cAf (mi - my+abe (m - my=f(h- zlmnfu), 
LA (Mg - MB) + MB (MSI - Zg) + NO (ZS3 - MSI) = LMNF, 
the equation becomes 
d(f) (E — 2LMNu — v-) -r- dt = 
- 3) (M — 2LMFu) F (H - 2LMNFu) V (G - 2) 2 ) . 
G + 0 V (K-2LMNGu) SmU 
LMNFpqr V (£ - 3) 2 ) 
+ V (G) V (M- 2ZMMGu) ’ 
where it is to be remarked that 
G-{E-2LMNu-E) 
Now 
= ((r-D 2 ) F 2 + G(K-UMNGu) - (G - 2) 2 ) (K - 2LMNGu) sin 2 U 
-2<S)FJ(G-&)'d{(K-2LMNGu)}sm U. 
dt(H-2LMNFu)^/(G) 
K-2LMNGu 
du = pqrdt, 
the differential (Z</> can be expressed as a fraction, the numerator whereof is 
-2)dU(K- 2LMNGu) (G) + FdUsj {G (G - &) (K - 2LMNGu)\ sin U 
, LMNFGdus/{G(G-$ 2 )} rr 
+ <J(K-2LMNGu) C ° S ’ 
and the denominator 
(G - D 2 ) M + G (K - 2LMNGu) - 22)Zy (G - 2> 2 ) (M - 2ZMMGu) sin U 
— (G — 2) 2 ) {K— 2LMNGu) sin 2 U. 
To simplify, write 
V (K - 2LMNGu) = s, V (G - $ 2 ) = Zi,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.