141
404]
ON THE ROTATION OF A SOLID BODY.
so that p, v are determined in terms of j and <£. These expressions give
d<f> = y “j n a • { cos ^ (qdr — rdq) + cos m (rdp —pdr) + cos w (pcZ(? — qdp)},
which is reducible to Eulers equation
7, _ 7,(Mg — MB)cosZ + </(iVSl — Zg)cosm + r(Z33 — MSI)cosw
9 E-2LMNu -E ’
and thence, substituting for cos Z, cos ra, cos n their values, and observing that
Ap* (Mg - m) + B(J 2 + Gr , = _ (// _ 2LMNFu),
BCf- (Mg - mb) 2 + cAf (mi - my+abe (m - my=f(h- zlmnfu),
LA (Mg - MB) + MB (MSI - Zg) + NO (ZS3 - MSI) = LMNF,
the equation becomes
d(f) (E — 2LMNu — v-) -r- dt =
- 3) (M — 2LMFu) F (H - 2LMNFu) V (G - 2) 2 ) .
G + 0 V (K-2LMNGu) SmU
LMNFpqr V (£ - 3) 2 )
+ V (G) V (M- 2ZMMGu) ’
where it is to be remarked that
G-{E-2LMNu-E)
Now
= ((r-D 2 ) F 2 + G(K-UMNGu) - (G - 2) 2 ) (K - 2LMNGu) sin 2 U
-2<S)FJ(G-&)'d{(K-2LMNGu)}sm U.
dt(H-2LMNFu)^/(G)
K-2LMNGu
du = pqrdt,
the differential (Z</> can be expressed as a fraction, the numerator whereof is
-2)dU(K- 2LMNGu) (G) + FdUsj {G (G - &) (K - 2LMNGu)\ sin U
, LMNFGdus/{G(G-$ 2 )} rr
+ <J(K-2LMNGu) C ° S ’
and the denominator
(G - D 2 ) M + G (K - 2LMNGu) - 22)Zy (G - 2> 2 ) (M - 2ZMMGu) sin U
— (G — 2) 2 ) {K— 2LMNGu) sin 2 U.
To simplify, write
V (K - 2LMNGu) = s, V (G - $ 2 ) = Zi,