238 ON THE CURVES WHICH SATISFY GIVEN CONDITIONS. [406
is a conic (that is r — 2) first in terms of m, n, k, and finally in terms of m, n, a
(a = 3m + k, as above). The results are
for r—2, that is, curve C r a conic.
[1]=
2 m +
2A-
K
=
2 tn +
??
= 2 ?» +
n
[2]=
3m +
6A-
2k
=
3?? +
K
=
a
[3]=
4m +
12A-
3 k
= -
ém +
6» +
3 k
= - 4»? -
3?? +
3a
[4] =
5 ?•»? +
20A-
4 k
= -
10 m +
10?? +
6k
= - 10??? -
8?? +
6a
[5] =
6 rm +
30A -
5k
- -
18?» +
15» +
10k
= - 18?» -
15» +
10a
[1,1]=-
12 m -
20A +
7 k
= -
4??? -
10»-
3k
= - 4/??-
n -
3a
[1, 2]=-
24m -
60A +
16k
=
12»? -
30?? -
14 k
12 m
12?? -
14a
[1,3]=-
40?in -
136A +
29 k
=
56?» -
68»-
39 k
= 56??? +
49» -
39a
[1, 4]=-
60rm -
260A +
46 k
=
140?/? -
130?? -
00
= 140»? +
122» -
84a
[2, 2]= -
45 m -
144A +
32 k
=
54?» -
72?? -
40 k
= 54?/? +
48» -
40a
[2, 3]= -
72rm -
288A +
54k
=
144»? -
144» -
90k
= 144?» +
126» -
90a
[1, 1, 1] =
160m +
352A-
98k
= -
32»? +
176?? +
78k
= - 32?» -
58?? +
78a
[1, 1, 2] =
360?•??? +
1056A -
240k
= -
336»? +
528» +
288k
= - 336?» -
336?? +
288a
[1. i, 3] =
672?•??? +
2528A -
478k
1184?» +
1264?? +
786k
= - 1184»?-
1094» +
786a
[1, 2, 2] =
756m +
2700A +
530k
__
1188?» +
1350» +
820k
= - 1188»? -
1110» +
820a
[1, 1,1, 1]=-
3360m -
8928A +
2106k
=
2208»? -
4464» -
2358k
= 2208?» +
2610» -
2358a
[1, 1, 1, 2]= —
8064m -
26784A +
5376k
=
10656»?-
13392» -
8016k
= 10656»? +
10656?? -
8016a
1, 1, 1, 1] =
96768?-?» + 296448A -
61464k
= -
102912»? +148224?? + 86760k
= -10912»? -
112056?? +86760a
(It may be noticed as a curious circumstance that in the last column in the
expressions of [2], [1, 2], [1, 1, 2] and [1, 1, 1, 2] respectively, the coefficients of m
and n are in each case equal.)
91. In the case of the conic, (1), (2), &c. are the expressions denoted in the
former part of this Memoir by (1 ::), (2 .*.), &c., the number of points being in each
case such as to make in all five conditions; calculating these functions by means of
the formulae (a)=[a], &c., the comparison of the resulting values with the values
previously obtained will show a ‘posteriori the limits within which the formulae are
applicable; where they cease to be applicable I find the difference, and annex it as
a correction to the formula value: I have in some cases given what seems to be the
proper theoretical form of this difference. We have
(1 ::) = 2 m + n;
(2 .*.) = «5
(3 :) = — 4m? — 3m + 3a;
(4 •) = — 10m? — 8m + 6a ;
(5) = - 18m? — 15m + 10a — [— 3?m + a] (= — [t]) ;