Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

348 A MEMOIR ON THE THEORY OF RECIPROCAL SURFACES. [411 
54. Forming the reciprocal equation 
/3 = 2n' (n — 2) (11m' — 24) 
-V (An'-B) + C'q 
— c' (Dn — E) + F'r 
— G/3' — Hy — It' 
+ linear function (%, j', 6', x> O', B', i, j, 6, %, G, B), 
and substituting herein the values which belong to the surface of the order n without 
singularities, we should have identically 
0 = 2 n(n — l) 2 (n — 2) (n 2 + 1) (llw 8 — 22m 2 + 11m — 24) 
— \n (m — 1) (m — 2) (m 3 — m 2 + m — 12) [An (m — l) 2 — B] 
+ m (m — 2) (m — 3) (m 2 + 2m — 4) G 
— 4m (m — 1) (m — 2) [Dn (m — l) 2 — E] 
+ 2m (m — 2) (3m — 4) F 
— 2m (m — 2) (11m — 24) G 
— 4m (m — 2) (m — 3) (m 3 + 3m — 16) H 
— j?n (m — 2) (m 7 — 4m 6 4- 7m 8 — 45?i 4 + 114/? 3 — 111?*. 2 + 548m — 960) I; 
or dividing the whole by n (n — 2), this is 
0 = 2 (m - l) 2 (m 2 + 1) (11m 3 - 22m 2 + 11m - 24) 
— k (m — 1) ( n3 — m 2 + m — 12) [An (m — l) 2 — B] 
+ (m — 3) (m 2 + 2m — 4) G 
— 4 (m — 1) [Dm (m — 1 ) 2 — E] 
+ 2 (3m - 4) F 
- 2 (11m- 24) G 
— 4 (?2 — 3) (m 3 + 3m — 16) H 
— j;(n 7 — 4m 6 + 7m 5 — 45?i 4 + 114m 3 — 111m 2 + 548?i- — 960) I. 
55. And then, expanding in powers of n and equating to zero the coefficients 
of the several powers n 7 ,...n°, we obtain 
22 
-88 
+ 154 
-224 
+ 250 
- 184 
+ 118 
— 
48 
U 
+ 2 A 
+ ^A 
- 20A 
+ ^A 
- 6A 
+ ^B 
- B 
+ B 
— 1 3 R 
+ 
6D 
+ C 
- G 
- 10C 
+ 
12C 
- 4D 
+ 12 D 
- 12 D 
+ 4 D 
+ 4D 
4 E 
+ 6D 
- 
8 F 
- 22C 
+ 
48 G 
- 4F 
+ 12 H 
— 12ZT 
+ 
i—* 
o 
o 
tq 
— 
192 H 
' 
+11 
-K 
+ 
-19/ 
/ 
+ 160/ 
II 
II 
II 
ii 
11 
ii 
ii 
II 
0 
0 
0 
0 
0 
0 
0 
0
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.