357
411] A MEMOIR ON THE THEORY OF RECIPROCAL SURFACES,
writing herein
n' = cl 4- k — cr — 2 6' — 45 — 2\j — 3% — o",
the value is
= — 26a + 22« — 206' — 4021 — 20j — 30% — 10a*.
Substituting for k its value = a (n — 2) + 5 — p — 2o*, we have
12c' — 26n' = a (22n — 70) - 20C — 1821 — 20j — 30% — 22p — 44o*;
or substituting for a, p, a their values, this is
= {n (n - 1) - 26 - 3c} (22™ - 70) - 206' - 185 - 20j - 30%
— 226 (n — 2) + 44/3 + 667 4- 66£
- 27c (n - 2) + 108/3 + 277 4- 270,
and adding hereto the remaining terms,
/3 + 26™ - 12c + 2' + 7/ + 8%' - 4- 46" 4- 105'
-2 -7j -8% -46' -105,
we have
/3' = 2™ (n - 2) (lln - 24) 4- b (- 66™ 4-184) + c (- 93™ + 252) 4- 153/3 4- 93 7 4- 66i
4-6 4- 7/4- 8%' — \& 4- 4(7'4-105'
- 2 - 27j - 38% 4- *£ 0 - 24G - 285.
Comparing this with the value of /3', No. 63 of the foregoing Memoir, we should
have
0 = is cw - 12c - 12/3 - ^7
~(x + 1)2' — 14%' — \6' — 96" — 285'
- (a? 4- 86) 2 + 6? 4- ^% - 2d 4- 285
4- T Vd (- 165 - 8% - 0 + 165' 4- 8%' 4- 0'),
or, what is the same thing,
0 = 13c™ - 48c - 48/3 - 137 4- <t>,
if for shortness
0=-(4a;'4- 4)2' — 56%' — 76' — 36C' - 1125'
-(4a? 4-344) 2 4-24/4-70% —80 4-1125
4- \g (- 165 - 8% - 0 4-165' 4- 8%' 4- 0').
I do not attempt to verify this equation, but I will partially verify a result
deducible from it; viz. if <!>' is the like function of the accented letters, then we have
cp _ qy = 11 _ ii',
where
n = (4af - bx - 340) 2 + 24j 4- 126% 4- 2245 4- 366' - 0
-ii/(16.B + 8 x + 0);