Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

357 
411] A MEMOIR ON THE THEORY OF RECIPROCAL SURFACES, 
writing herein 
n' = cl 4- k — cr — 2 6' — 45 — 2\j — 3% — o", 
the value is 
= — 26a + 22« — 206' — 4021 — 20j — 30% — 10a*. 
Substituting for k its value = a (n — 2) + 5 — p — 2o*, we have 
12c' — 26n' = a (22n — 70) - 20C — 1821 — 20j — 30% — 22p — 44o*; 
or substituting for a, p, a their values, this is 
= {n (n - 1) - 26 - 3c} (22™ - 70) - 206' - 185 - 20j - 30% 
— 226 (n — 2) + 44/3 + 667 4- 66£ 
- 27c (n - 2) + 108/3 + 277 4- 270, 
and adding hereto the remaining terms, 
/3 + 26™ - 12c + 2' + 7/ + 8%' - 4- 46" 4- 105' 
-2 -7j -8% -46' -105, 
we have 
/3' = 2™ (n - 2) (lln - 24) 4- b (- 66™ 4-184) + c (- 93™ + 252) 4- 153/3 4- 93 7 4- 66i 
4-6 4- 7/4- 8%' — \& 4- 4(7'4-105' 
- 2 - 27j - 38% 4- *£ 0 - 24G - 285. 
Comparing this with the value of /3', No. 63 of the foregoing Memoir, we should 
have 
0 = is cw - 12c - 12/3 - ^7 
~(x + 1)2' — 14%' — \6' — 96" — 285' 
- (a? 4- 86) 2 + 6? 4- ^% - 2d 4- 285 
4- T Vd (- 165 - 8% - 0 + 165' 4- 8%' 4- 0'), 
or, what is the same thing, 
0 = 13c™ - 48c - 48/3 - 137 4- <t>, 
if for shortness 
0=-(4a;'4- 4)2' — 56%' — 76' — 36C' - 1125' 
-(4a? 4-344) 2 4-24/4-70% —80 4-1125 
4- \g (- 165 - 8% - 0 4-165' 4- 8%' 4- 0'). 
I do not attempt to verify this equation, but I will partially verify a result 
deducible from it; viz. if <!>' is the like function of the accented letters, then we have 
cp _ qy = 11 _ ii', 
where 
n = (4af - bx - 340) 2 + 24j 4- 126% 4- 2245 4- 366' - 0 
-ii/(16.B + 8 x + 0);
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.