Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

388 A MEMOIR ON CUBIC SURFACES. [412 
Write as before (A, B, C, F, G, H) for the inverse coefficients (A = be — f 2 , &c.), and 
K = abc — a/ 2 — brf- — ch 2 + 2fgh ; and moreover 
= (A, B, C, F, G, H\x, y, zf, 
P = Ax + Hy + Gz, 
Q = Hx + By + Fz, 
jR = Gx + Fy + Gz, 
t =fe + gy + hz, 
U = afyz + bgzx + chxy, 
V = 2Kxyz — aPyz — bQzx — cRxy 
= — a Hy 2 z — b Fz 2 x — c Gx 2 y 
— a Gyz 2 — b Hzx 2 — c Fxy 2 
+ (— abc — af 2 — b(f — ch 2 + 4fgh) xyz, 
W= (A, B, G, F, G, R\ayz, bzx, cxy) 2 , 
L = k 2 w 2 — 2 ktw — <3>, 
M=kw U+V, 
N = 2 kabc xyzw + W: 
54. Then the invariants of the ternary cubic are 
S — L 2 — 12 kwM, 
T — L ?j — 18&W LM — 54 k 2 w 2 N; 
and the required equation of the reciprocal surface is 
IQg 2 {(L 2 — 12kwMf — (L 3 — 18kwLM — 54<k 2 w 2 R) 2 } = 0, 
viz. this is 
0 = L 3 N = (k 2 w 2 — 2ktw — C I>) 3 (2kabc xyzw + W) 
+ L 2 M 2 + (k 2 w 2 — 2 ktw — d>) 2 (kw U + V) 2 
— 18 kiuLMN — 18&«; (k 2 w 2 — 2ktw — <f>) (kw U+V) (2 kabc xyzw + W) 
— 16kwM 3 — 16kw (kwU + F) 3 
— 2*Ik 2 w 2 N 2 — 27 k 2 w 2 (2kabc xyzw + IF) 2 , 
which, arranged in powers of kw, is as follows; viz. we have 
CoefF. (kw) 7 = 2abc xyz, 
(kw) 6 = 2abc xyz (— 6i) 4- W 
+ U\ 
(kw) 5 = 2abc xyz (— 3<i> 4- 12i 2 ) + W (- 6t) 
+ U 2 (-4t) + 2UV 
— SQabcxyzU,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.