Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

412] 
A MEMOIR ON CUBIC SURFACES. 
401 
where 
81. Forming the invariants, these are 
= A 2 + 24Uzw 4-144yz 2 w 2 , 
— J = A 3 + 36 A Uzw + 216 Vzhv 2 + 864vz 3 w 3 , 
A = y 2 + 4 (Sz + 7w) x, 
TJ = 27S# 2 + 2a (Sz — 7iv) 2 + 3by (Sz + yw) + c [y 2 — 2 (Sz + 7w) x] — dxy, 
V = (— Sac + 9b 2 ) (Sz — yiu) 2 
+ (2c 2 — bd) [;y 2 — 2 (Sz + 7w) x\ 
+ (— 4ad + 66c) y (Sz + 7w) 
— ‘led xy 
+ d 2 x 2 
+ 47S (2cx 2 — 3bxy + ay 2 ), 
y = c 2 — bd, 
v = ad 2 — Ibcd + 2c 3 , 
and the equation is 
43ST~ r ~ 7 K A2 "h Uzw + 144yz 2 w 2 ) 3 — (A 3 + 36AUzw + 216 Vzhu 2 + 864za2 3 w 3 ) 2 } = 0; 
or, expanding, this is 
A 4 y-A 3 V+A 2 U 2 
+ 4zw ( — A 3 v+12A 2 U/jl—9AUV+8U 3 ) 
+ 3 Gzhu 2 ( 4;A 2 y 2 — 4 A Uv +16 U 2 y — 3 F 2 ) 
+ 864^ 3 w 3 ( 4 Uy 2 — Vv) 
+ 1728z 4 w 4 ( 4y 3 —i> 2 ) = 0, 
where observe that the value of 
4y 3 — v 2 , =4 (bd — c 2 ) 3 — (ad 2 — 3bed + 2c 3 ) 2 is = — d 2 (a 2 d 2 + 4ac 3 + 4b 3 d — 3b 2 c 2 — Gabcd). 
82. It is convenient to modify the form of the equation as follows; write 
U 1 — U + SaySzw, V 1 =V+(— Sac + 9b 2 ) 7Szw, 
so that 
A = y 2 + 4 (Sz + 7w) x, 
U x = — 2ySx 2 + 2a (Sz + 7w) 2 + 3by (Sz + 7w) + c [y 2 - 2 (Sz + 7w) x] — dxy, 
V 1 = (— 8ac + 9b 2 ) (Sz + 7iv) 2 
+ (2c 2 — bd) [y 2 — 2 (Sz + 7w) x~\ 
+ (— 4ad + 66c) y (Sz + 7w) 
— 2cdxy 
+ d?x 2 
+ 478 (2c# 2 — Sbxy + ay 2 ), 
y= c 2 — bd, 
v = ad 2 — 2bcd + 2c 3 , 
C. VI. 
51
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.