Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 6)

572 
ON POLYZOMAL CURVES. 
[414 
and the result of the elimination then is 
(\2l + /¿53 +1;(5 ) 2 + (V21 + /¿'53 + v'&y + (\"2l + /¿"53 + v"&Y = 0. 
But substituting for 21, 53, (5 their values, and writing, for shortness, 
— i = b'c" -b"c' + c'a"- c"a' + ah" - a"b, 
-j = b"c -be" + c"a - ca" + a"b - a b", 
— k = be' —b'c +c a' — c'a + a b' — a b, 
A = a (b'c" - b"c) + a (b"c - be") + a" (be' - b'c), 
-p = (b'c" - b"c') (a 2 + a' 2 + a" 2 ) + (c'a" - c"a') (b 2 + b' 2 + b" 2 ) + (ab" - a"b') (c 2 + c' 2 + c" 2 ), 
— q = (b"c - be") (a 2 + a' 2 + a" 2 ) + (c"a - ca" ) (b 2 + b' 2 + b" 2 ) + (ab - ab" ) (c 2 + c' 2 + c" 2 ), 
— r = (be' — b'c ) (a 2 + a! 2 + a" 2 ) + (ca' — c'a ) (b 2 + b' 2 + b" 2 ) + (ab — ab ) (c- + c - + c -), 
-l — ( c -b ) (a 2 + a' 2 + a" 2 ) + ( a -c ) (b 2 + b' 2 + b" 2 ) + ( b -a ) (c 2 + c' 2 + c" 2 ), 
— m = ( c' —b' )(a 2 + a' 2 + a" 2 ) + ( a - c' ) (b 2 + b' 2 + b" 2 ) + ( b' - a' ) (c 2 + c' 2 + c" 2 ), 
-n =( c" -b" ) (a 2 + a' 2 + a" 2 ) + ( a" - c" ) (b 2 + b' 2 + b" 2 ) + ( b" - a" ) (c 2 + c' 2 + c" 2 ), 
we find 
X21+ /*$ + *(£ 
= — i (x 2 + y 2 + z 2 ) 
+ 2i (x 2 + y 1 + z 2 ) — 2x (ix +jy + kz) — 2 A« + ny — mz — p, 
with similar expressions for V21 + ¿¿'55 + v%, + /¿"53 + v"(S, and the result is 
[i (x 2 + y 2 4-z 2 ) — 2x (ix +jy + kz) — 2Ax + ny — mz—p} 2 
+ {j (x 2 + y 2 + z 2 ) — 2 y (ix +jy + kz) — nx — 2 A y + lz — q} 2 
+ [k (x 2 + y 2j r z 2 ) — 2z (ix + jy + kz) + mx — ly — 2 A2 — r } 2 = 0, 
viz., this is 
(x 2 + y 2 + z 2 ) 2 (i 2 +j 2 + k 2 ) 
+ (x 2 + y 2 + z 2 ) {4A (ix +jy + kz) + 2 (i (ny — mz) +j (lz — nx) + k (mx — ly)) 
+ 4 A 2 — 2 (ip+jq + kr) + (l 2 + m 2 + n 2 )] 
— (lx + my + nz) 2 + 4 (ix 4-jy + kz) (px + qy + rz) 
+ 4A (px + qy + rz) — 2 (p (ny — mz) + q(lz — nx) + r (mx — ly)) 
+ p 2 + q 2 + r 2 = 0, 
viz., this is in the rational form the equation of the pair of cone-spheres. The 
function on the left-hand side must, it is clear, be save to a numerical factor the 
norm of 
y/(b — c) 2 + (b' — c') 2 + (b" - c") 2 . V(x — a) 2 + (y — a') 2 + (z — a") 2 
+ V(c - a) 2 + (c - a') 2 + (c" - a") 2 . V(> -b ) 2 + (y- b') 2 + (z- U 7 ) 2 
+ ^(a—b) 2 + (a' — b') 2 + (a" — b") 2 . V(x - c j 2 + (y — c') 2 + (z — c" ) 2 ,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.