598
NOTES AND REFERENCES.
I compare his (6 + 26 + 1 =) 33 relations :
(1) a = a'. cl = d'.
/=/'• 9=9'-
i = ï. h = h!.
(6) n (n — 1)= a + 2b + 3c.
(7) a (a — 1) = n + 2§' + 3k.
(8) c — k = 3 (11 — a).
(9) b (b - 1) = q + 2k + 3 7 + 3d + 2'.
(10) [3 (b — q) = 7 + d — s 4- 2', determines s].
(11) c (c — 1) = r + 2h + 3/3 + 60' + 3e.
(12) [3 (c — r) = /3 + e — m 4- 20' + 2', determines m\
(13) a (n - 2) = /c - B + p + 2a + 2.
(14) b (n-2) = P + 2/3 + 3y + 3t +90' +2.
(15) c (ft - 2) = 2a + 4/3 + y + 8*' + 165' +120' + 2.
(16) a (11 — 2) (11 — 3) = 2 (S — 3U) + 3 (ac — Scr — x ) + 2 (ab — 2p -j).
(17) b(n- 2) (ft - 3) = 4 (& - 3i -/) + (ab - 2p -j) + 3 (be-3/3 - 2y - i) + 390' + 2 + 2'.
(18) c (ft - 2) (ft - 3) = 6(h-6 X '-l2B' -U'- 4 O'-g) 4- (ac - 3 a- X ) + 2(bc -3/3- 2 7 - ¿).
- 30 0' + 2 + 2',
with the like reciprocal equations (6) to (18) ;
(19) a +m -r -/3 -4>j'-3 X -UU'+ t'
= <t' + mi! — r' — /3' — 4>j — 3 X — 14 U 4- 2.
where k =
h =