Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 7)

87 
435] 
ON THE SIX COORDINATES OF A LINE. 
the equation of the hyperboloid is 
(agh) a? + (bhf) y 2 + (<fg)z 2 + {obc) w 2 
+ [( a bg) — {cah)] xw + [(bfg) + (chf)] yz 
+ i(^h) - {abf)] yw + [{cgh) + {afg)] zx 
In fact, we have 
(agh) = a 1 (gji 3 - g 3 h 2 ) + g i (Jim 3 - h 3 a 2 ) + h, {a 2 g 3 - a 3 g 2 ) 
= a. gh + g .ha + h. ag, 
where a, &c. stand for a 1} &c. and gh, &c. for g 2 h 3 — gJi 2 , &c. Hence the foregoing 
equation may be written 
oc 2 {a. gh + g . ha + h. ag) 
+ y* (b . hf 4-h.fb +f. bh ) 
+ z 2 (o-fg +f.gc +g.cf) 
+ w 2 {a .be + b . ca + c . ab) 
a.bg + b .ga + g.ab\ f b .fg+f. gb + g .bf\ 
\— c . ah — a .he — h. ca) y \+ c . hf + h .fc +f. eh) 
/ b . ch + c . hb — h.bc\ / c . gh + g . he 4- li. cg\ 
+ yW [- a.bf-b.fa -f.ab) + ZX \+a.fg+f.ga+g.af) 
' a.hf+h.fa+f. 
.+ b . gh + g. hb + h. v 
( c.af+a.fc +f.ca\ ( 
\— b. eg — c . gb — g .be ) y \- 
bc .w ( hy — gz + aw) 
4- zw 
55. This is 
+ ca . w {— hx +fz+bw) 
4- ab .w( gx —fy + cw) 
+ gh. x (ax + by + cz) 
+ hf .y (ax + by + cz) 
+ fg. z (ax + by 4- cz) 
+ af [w (ax + by + cz) — x{ hy — gz 4- aw)) 
4- bg [w (ax + by 4- cz) — y (— hx +fz 4- bw)] 
4- ch [w{ax + by + cz)-z{ gx -fy + cw)) 
— bf.y { hy-gz + aw) 
— cf.z { hy-gz+aw) 
— eg . z (—hx +fz + bw) 
— ag. x {—hx +fz + bw) 
— ah. x {gx —fy +cw) 
— bh.y {gx — fy 4- cw) = 0.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.