435]
ON THE SIX COORDINATES OF A LINE.
97
79. It is to be observed that the foregoing values give identically x+y+z+w= 1,
so that the equation of the plane infinity is x + y + z + w = 0. The values of the
coordinates {x, y, z, w) may be written
x : y : z : w : 1 = PBGD : PGAD : PABD : PGBA : ABGD;
or in the original form
x : y : z : iv : 1 = PBGD : APCD : ABPD : ABGP : ABGD,
as may be most convenient.
80. Denoting the points (a, /3, 7, 8) and (a', /3', 7, S') by Q, Q' respectively, we
have
a : /3 : 7 : 8 : 1 = Q£CT) : ¿Q(7£ : ABQD : ABCQ : ABGD
and
a' : /3' : 7' : 8' : 1 = Q'£(7£ : ¿Q'(7£ : ABQ'D : ABCQ' : ABGD,
and writing
(a, b, c, f, g, h) = (/3f - /3' 7, 7a' - y'a, a(3' - a.'/3, aS' - a'8, /38' - £'8, 78' - 78),
viz. the two sets being taken to be equal, a = (3f — ¡3'<y, &c. instead of merely pro
portional, then it is easily seen that we obtain
a : b : c : f : g : h : 1
= AQQ'D : Q'BQD : QQ'GD : QBGQ' : ¿Q(7Q' : ABQQ' : ¿£(7£,
that is, in order to form the first six combinations we successively replace
(.B, G), (C, A), (A, B), (A, D), (B, D), (G, £)
in ¿£(71) by (Q, Q').
Article No. 81. Resulting formula} of Transformation.
81. For the transformation of coordinates if we assume
x =(Ai, p 1, Vi, 2/o» • 2 'o> w 0 ),
y =(\, P2, v 2 , P& » )>
0 = (X 3 , /¿ 3 , i»„ p 3 $ „ )>
W = (X 4) /a 4 , y 4 , p 4 $ „ ),
and take also (a, b, c, f, g, h), (a 0 , b u , c 0 , f, g<> > 4>) respectively equal, instead of merely
proportional, to the foregoing values, then, observing that for the point A 0 we have
(x 0 , y 0 , z 0 , w 0 ) = (1, 0, 0, 0) we see that X 1} X 3 , X 3 , X 4 are the ABGD — coordinates of
¿0 i and the like as to the other sets of coefficients; viz. we have
X,
x 3
X 3
x 4
1 = A 0 BGD
A A, CD
ABAoD
ABCAo
ABGD
Pi
P‘2
Pi
Pi
1 =£0 „
„ £0 »
>> Do >)
» D 0
»
V\
V2
V3
Vi
1 == G 0 „
„ G 0 „
„ G 0 „
„ Co
>>
Pi
P2
Ps
Pi
II
rH
„ Bo „
„ Do,, :
„ Do
3?
C. VII.
13