Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 7)

436] 
ON A CERTAIN SEXTIC TORSE. 
107 
13. ihe equations, putting after the differentiations w — 0, and writing for shortness 
(*) in place of (*^x, y, zf, become 
tZ© e£© d® 1 1 i i 
dx dy ' dz + X V Z *) ~ (0 + a y • (0 + @y • (d + yf ’’ (0+ 8) 2 ' 
Now, observing that the second factor of © vanishes for the values 
a(0 + a) 3 , b(0 + ¡3) 3 , c(0 + y) 3 of (x, y, z), 
we have simply 
^ = (g 2 h 2 x + h 2 f 2 y + f 2 g 2 zf. 3a 2 [(a 2 x + b 2 y + c 2 z) 2 - 9b 2 c 2 yz]. 
But 
a 2 x + b 2 y 4- c 2 z = a 3 (9 + a) 3 + b 3 (0 + /3) 3 4- c 3 (6 + y) 3 , 
= 3«6c (0 + a)(0 + /3) (6 + 7), 
in virtue of the relation a (6 + a) 4- b (6 4- /3) + c (6 4- 7) = 0 and hence 
[(a 2 x + b 2 y + c 2 zf — 9b 2 c 2 yz] = 9b 2 c 2 (6 4- ¡3f (0 + y) 2 • [a 2 (0 + a) 2 — be (6 + ¡3) (6 + 7)], 
= 9b 2 c 2 (0 + /3) 2 (0 + y) 2 Q, 
where 
Q = a 2 (0 + a ) 2 — be (6 + /3) (6 + 7), 
= b 2 (6 4- /3) 2 — ca (6 4- 7) (0 4- a), 
= c 2 (0 + 7 ) 2 — ab (9 4- a) (0 4- /3). 
Hence 
^ = 27a 2 b 2 c 2 (g 2 h 2 x + h 2 f 2 y +f 2 g 2 z) 3 (0 + /3) 2 (9 + y) 2 Q, 
and similarly 
= 27a 2 b 2 c 2 (g 2 h 2 x + h 2 f 2 y + f 2 g 2 zf {9 + y) 2 (9 + ctf Q, 
dy 
~ = 27a 2 6 2 c 2 (g 2 h 2 x + h 2 f 2 y 4- f 2 g 2 z) 3 (0 + a) 2 (0 + /3) 2 Q; 
dz 
whence the above-mentioned conditions reduce themselves to the single condition 
(0 4- 8) 2 {34) 4- xyz (*)} = 27a 2 b 2 c 2 (g 2 h 2 x + h 2 f 2 y +f 2 g 2 zf (9 + a) 2 (0 + PY (0 + y) 2 Q- 
14. But we have 
g 2 h 2 x 4- h 2 f 2 y +f 2 g 2 z 
= g 2 h 2 a (0 + 8 +f) 3 + h 2 f 2 b (0 + 8 + gf +f 2 g 2 c (0 + 8 + Kf, 
= (0 + 8) 2 [(g 2 h 2 a + h 2 f 2 b 4- f 2 g 2 c) (0 + 8) + 3 (gha + hfb +fgc)fgh], 
= — abc (0 + 8) 2 [(gh + hf+fg) (0 + 8) + 3fgh], 
= - abc (0 + 8) 2 [gh (0 + a) + hf(0 + P) +fg (0 + y)], 
= — abc (0 + 8) 2 P, 
14—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.