447]
ON THE RATIONAL TRANSFORMATION BETWEEN TWO SPACES.
235
104. To effect the foregoing transformation, writing
x' : y' : z : w' = {x — py){ xw — yz)
: {x- y)(qxw-pyz)
: (z — qw) ( xw — yz)
: (z — w) (qxw — pyz) ;
or what will ultimately be the same thing, but it is more convenient for working with,,
x’ = (x-py)( xw- yz),
y' = {as- y) {qxw -pyz),
z = (,z — qw){ xw— yz),
w' = (z — w) {qxw — pyz);
these give
x — py = M'x,
x — y — N'y',
z — qw — M'z',
z — w = N'w’,
where M', N' are quantities which have to be determined; and thence
(1 - p) x = M'x — pN'y,
(1 — p) y — M'x' — N'y,
(1 — q) z = M'z' — qN'w',
(1 — q)w — M'z' — N'w';
whence also
(1 - p) (1 — q) ( xw- yz) = N' [ {{q - 1) x'w' - (p - 1 )y'z’} M' + (p - q) y'w'N'],
(1 - p) (1 — q) {qxw — pyz) = M' [- (p - q) x'z'M' + {{pq - q) x'w' - (pq —p) yz'} iT] ;
but we have
or, substituting,
that is
xw — yz x x—py_x _ M'x' _N\
qxw — pyz y' ' x — y y' N'y' M' ’
M' { (q - 1) x'w' -(p- 1) y'z'} +N'(p- q) y'w'
= M' {- (p - q) x'z'} + N {{pq - q) x'w' - {pq -p) y'z'};
M' {{q - 1) x'w' -{p- 1) y'z' + {p-q) x'z'} = N' {{pq - q) x'w' - {pq - p) y'z' - {p - q) y'w'};
or, what is the same thing,
M' = {pq - q) %'w' - (pq - p) y' z ' - (p - q) y'w',
N' = { q- 1) x'w' -{ p- 1) y'z' + {p-q) x'z';
30—2