\
465]
361
465.
NOTE ON THE LUNAR, THEORY.
[From the Monthly Notices of the Royal Astronomical Society, vol. xxv. (1864—1865),
pp. 182—189.]
I attend, in the expressions for the lunar coordinates, only to the coefficients
independent of m. Planas values, taken to the fourth order only, are as follows; for
greater simplicity I write a = 1 ; and, instead of nt + constant, cnt + constant, gnt + con
stant, I write l, c, g respectively ; viz., I is the mean longitude, c the mean anomaly,
g the mean distance from node : this being so, then r, v, y, denoting the radius vector
longitude and latitude respectively, we have
- (Plana) =
r
(but I omit Plana’s term
e —
ïï e 3 '
- 1 fe
cos
c
+
e 2 -
i* 4
~ \ fe 2
33
2c
+
§ e 3
33
3c
+
Î
33
4c
-
Î fe 2
>3
2<7
—
1 f e
33
o
1
+
i
COS
2c + 2g which should be = 0).
1+
+
2 e -
ì e 3
- h fe
sin
c
+
Î e 2 -
ii pi
2 4 e
~ if fè 1
3 3
2c
+
13 p3
T2 e
33
3c
+
103 (A
_ 9(T 6
33
4c
-
Ì f~
ÄTV + 4 f
33
2<7
+
f fe
33
cs
1
r fcO
C. VII.
46