Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 7)

\ 
465] 
361 
465. 
NOTE ON THE LUNAR, THEORY. 
[From the Monthly Notices of the Royal Astronomical Society, vol. xxv. (1864—1865), 
pp. 182—189.] 
I attend, in the expressions for the lunar coordinates, only to the coefficients 
independent of m. Planas values, taken to the fourth order only, are as follows; for 
greater simplicity I write a = 1 ; and, instead of nt + constant, cnt + constant, gnt + con 
stant, I write l, c, g respectively ; viz., I is the mean longitude, c the mean anomaly, 
g the mean distance from node : this being so, then r, v, y, denoting the radius vector 
longitude and latitude respectively, we have 
- (Plana) = 
r 
(but I omit Plana’s term 
e — 
ïï e 3 ' 
- 1 fe 
cos 
c 
+ 
e 2 - 
i* 4 
~ \ fe 2 
33 
2c 
+ 
§ e 3 
33 
3c 
+ 
Î 
33 
4c 
- 
Î fe 2 
>3 
2<7 
— 
1 f e 
33 
o 
1 
+ 
i 
COS 
2c + 2g which should be = 0). 
1+ 
+ 
2 e - 
ì e 3 
- h fe 
sin 
c 
+ 
Î e 2 - 
ii pi 
2 4 e 
~ if fè 1 
3 3 
2c 
+ 
13 p3 
T2 e 
33 
3c 
+ 
103 (A 
_ 9(T 6 
33 
4c 
- 
Ì f~ 
ÄTV + 4 f 
33 
2<7 
+ 
f fe 
33 
cs 
1 
r fcO 
C. VII. 
46
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.