422
ON THE DETERMINATION OF THE
[476
and with these values
x = l + m cot S tan (c — A),
y = m sec (c — A),
and thence
y' 2 — (x — l) 2 tan 2 S = m 2 ,
viz., this is the hyperbola obtained by rotating the orbit-plane about the line of nodes,
longitude b — 90°.
54. Imagine the orbit-plane (having upon it the hyperbola) brought by such
rotation into the plane z = 0, or plane of the ecliptic, so that the hyperbola will be
a curve in this plane, the inclination to Sx, or longitude of the axis Sx', being of
course = b — 90°. Transforming the equation to axes Sx, Sy, we must write in the
equation
x' = x sin b — y cos b,
y' = x cos b + y sin b,
and the equation thus becomes
(x cos b + y sin b) 2 — (x sin b —y cos b — Vf tan 2 & = m 2 .
55. It will be recollected that the equations of the ray were
writing herein 0 = 0 we find
x — A __y — B _z — C
f -~Y ~ h ’
x = A — Î G, =
y = B - - G, =
* g
b
h’
a
h’
and it is clear that this point f ^^J should lie on the hyperbola
Substituting for (x, y) the values in question, we have first
b sin b + a cos b — hi «■
= ^ {(h 2 + (f cos b + g sin b) 2 ) (b sin b + a cos b) — h (ah — cf) (cos b + (bh — eg) sin b)}
= ^ {(f cos b + g sin b) 2 (b sin b + a cos b) + (f cos b + g sin b) ch}
'12'
= — (f cos b + g sin b) {(f cos b + g sin b) (b sin b + a cos b) + ch (cos 2 b 4- sin 2 b)}
= — (f cos b + g sin b) (— a sin b + b cos b) (f sin b — g cos b) ;