476] ORBIT OF A PLANET FROM THREE OBSERVATIONS. 443
or developing, this is
6 (sin 2 c — 3 cos 2 c),
-= i 4r\ (sin 2 c — 3 cos 2 c) cos c
\/3 1
— r 2 (sin c + 2 cos c) (sin 2 c — 3 cos 2 c)
+ r 3 (sin c — 2 cos c) (sin 2 c — 3 cos 2 c)}
+ y {— 2r x sin C COS G
+ r 2 (— sin 2 c + sin c cos c + 6 cos 2 c)
+ r 3 ( sin 2 C 4- sin c cos c — 6 cos 2 c)}
i — 6 cos 2 c
\/3 1
+ 3r 2 (sin 2 c + sin c cos c — 2 cos 2 c)
+ 3 r 3 (sin 2 c — sin c cos c — 2 cos 2 c){ = 0;
(observe that the orbit will be a right line if sin 2 c — 3 cos 2 c = 0, that is if c = 60°,
which is right, since 60° is the angular radius of the regulator circle).
89. Putting in the equation tan c = A, and therefore cos c = — - , the equation
becomes
We have
bVl + X 2
^4rj — (X + 2) r 2 + (X —
1
+
(2X + (X + 2) (X — 3)
2 V3 (X 2 - 3) V
1
+ 2 (X 2 - 3)
^— 2r : + (X — 1) (X + 2)
- Vi + x 2
x x = V1 + X 2 ,
X + 2 ’
1 .
1 2A+3
^+2 ’
Vi+x 2
A —2 ’
1 2A-3
V3 X-2 ’
and thence, writing for shortness
E 1 = Vl + f X 2 ,
E, = ~ V7X 2 + 12X + 12,
" Vs
jR 3 =4r V7X 2 - 12X + 12,
V3
56—2