476]
ORBIT OP A PLANET FROM THREE OBSERVATIONS.
455
Article Nos. 99 to 103. Planogram No. 4, the Orbit-pole in the Ecliptic.
99. When the orbit-pole describes the circle of the ecliptic, the orbit-plane passes
through the axis of z, or polar axis. We have c = 90°, and consequently
a , ß , 7 = sin b,
— cos b,
0,
a '> ß' > y = 0 ,
0 ,
- 1,
a", ß\ 7" = cos b,
sin b,
0.
Reverting for a moment to the general case where the six coordinates of the ray are
(a, b, c, f, g, h), the formulae for the intersection by the orbit-plane are
x' : y : 1 = (a, b, c$V, ß', y) = — c
: — (a, b, c§a , ß , 7) : — a sin 5 + b cos b
: ( f > g> h$a", ß", y") ■ f cos 6 + g sin b,
that is
and thence
consequently
If Sf
— + - cos b + - sin b = 0,
X c c
+ - cos b — - sin b = 0 ;
x c c
1 : cos b : sin b =
-af-bg _ gy' -f a
c 2 * ex'
b
ex'
ha/ : gy' + a : -iy' +b;
h#' 2 = (gy’ + a) 2 + (%' - b) 2 ,
or, what is the same thing,
ha/ 2 = (f 2 + g 2 ) y' 2 + 2 (ag — bf) y + a 2 + b 2 ,
or, in particular, if (as in the special symmetrical case) ag — bf = 0, then
ha/ 2 = (f 2 + g 2 ) y' 2 + a 2 + b 2 .
100. For the symmetrical system of rays we have as before
a l>
bi, Ci, fi, gi, h 2 = 0, V.3,
-1,
0, 1,
Vs,
a 2 ,
bo, C 2 , fo, g 2 , h 2 = 3, V3,
2,
Vs, 1,
- 2 V3,
a»,
bs> C 3 , f 3 , g 3 , h 3 = 3, V3,
2,
V3, 1,
- 2V3,
x-l
• Vi ' 1= 1:
n/ 3 cos &
: sin b
J
x%
: y 2 ' : 1 = — 2 : — 3 sin b + V3 cos b
: sin 6 + V3 cos b,
a? 3
: y 3 ' : 1 = — 2 : 3 sin b + V3 cos b
: sin b -
V 3 cos 6,
and thence