Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 8)

[496 
496] 
FOR THE NEGATIVE DETERMINANTS &C. 
61 
Det. 
Order 
Compn. 
4 X 
Classes 
on 
Char act. 
Compn. 
1 
91 
0, - 1, 0, 91 
1 
1 
1, 0, 91 
1 
1 
0, - 2, 1, 11 
(PP 
pp 
4, - 1, 23 _ 
9 4 
f 
0, 2, 1, - 11 
J 
4, 1, 23 
9 2 
9 4 
92 
0, - 1, 0, 92 
) 
1, 0, 92 
1 
1 
2, - 3, 0, 4 
(PP 
pp 
9, - 4, 12 
9 i 
g- 
2, 3, 0, - 4 
J 
9, 4, 12 
9 2 
9 4 
93 
0, - 1, 0, 93 
ip 
pp 
1, 0, 93 
1 
l 
94 
0, - 1, 0, 94 
ip 
pp 
1, 0, 94 
1 
l 
95 
0, - 1, 0, 95 
pp 
pp 
1, 0, 95 
1 
l 
°f 
1, - 2, - 2, 6 
1 
6, - 1, 16 
eri 1 
1, 2, - 2, - 6 
j PP 
ip 
6, 1, 16 
eri 
°f 4 
96 
0, - 1, 0, 96 
ip 
pp 
1, 0, 96 
1 
1 
97 
0, - 1, 0, 97 
pp 
pp 
1, 0, 97 
1 
1 
98 
0, - 1, 0, 98 
pp 
pp 
1, 0, 98 
1 
9 2 
99 
0, - 1, 0, 99 
1 
1, 0, 99 
1 
9 4 
0, - 2, 1, 12 
l ip 
pp 
4, - 1, 25 
9 2 
1 
0, 2, 1, - 12 
j 
4, 1, 25 
f 
1 
100 
0, - 1, 0, 100 
pp 
pp 
1, 0, 100 
1 
i 6 
0, - 2, - 2, 11 
pp 
2pp 
2 (2, 1, 13) 
2.1 
r 
l 
1, - 1, - 4, 4 
1, 1, - 4, - 4 
1 pp 
bpp 
5 (1, 0, 4) 
5.1 
2(г 
1, - 3, - 1, 3 
1, 3, -1,-3 
1 pp 
10pp 
10 (1, 0, 1) 
10.1 
1 
1 
Table II. 
of the binary 
cubic 
forms the 
determinants of which 
are ti 
1 
numbers = 1 (mod. 4) from — 3 
to — 
99. 
<7 4 
9 2 
Det. 
Order 
Compn. 
4 X 
Classes 
on 
Charact. 
3 
0, 1, 1, 0 
ip'\ 
1 ■ 
1 
1, 0, - 1, 1 
PP\ 
ip 
2, ± 1, 2 
a 
2cr 
1, 0, - 1, -1 
pp) 
\ 
1 
7 
0, - 1, - 1, 1 
PP 
ip 
2, 1, 4 
cr 
m 8 
11 
0, - 1, - 1, 2 
pp 
ip 
2, 1, 6 
a 
m 4 
15 
0, - 1, - 1, 3 
ip 
ip 
2, 1, 8 
a 
1 
19 
0, - 1, - 1, 4 
PP 
ip 
2, 1, 10 
(T
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.