382 ON DR. wiener’s MODEL OF a CUBIC SURFACE WITH 27 REAL LINES ;
and we have
G + H = bc,
Fm + G*/Il+H =
Vi/
Fm x - G Vif x + H= (mi ~ ~ c) ,
-Vj/;
(2)
(1)
(6).
Eliminating f 7 , we have
g (m, Vff + m Vg.) + H (m - m.) = ”*■' (m ~ ff (m ~ c) + ” (m ‘ ~ ^ 1 ^ ~ c >,
Vif Vif
which is easily reduced first to
g 2mOT,-»(ro + m 1 ) w . „ ' 0» - <») 0» ~ &)
(m-o)Vi + ( (m + mi) ViT
and then to
G [a A + 2m (a — b) (a — c)} — H - + a6c {— i. + 2m (i/i — a)} = 0 ;
V i/
and combining herewith G + H = be, we have
U _ 26c m [a (m — a) + (a — 6) (a — c)]
a A + 2m (a — 6) (a — c) +
and we have then
that is,
Vif
G = bc-H;
/^(m + m x ) + Cr (Vif — V ifj) + 2if = 0,
i Vif
J^m (m — a) — A] + G —2// (m — a) = 0,
or, what is the same thing,
4 Vif f J. VF)
f 7 {2m (m — a) — A} = —be II j 2 (m — a) j-.
m — a
m — a)
We then have
Fx + H = y (— G +
{x — b)(x — c)
y*
x— a
that is,
{Fx + H) 2 =
^ ^ a6c \ _ y {Ha 4- Gx)
~ y \ ~ x — a)~ " ’
{x — b)(x — c)
abc {x — a)
{Ha + Gx) 2 ,