525] AN EXAMPLE OF THE HIGHER TRANSFORMATION OF A BINARY FORM,
and the result of the elimination therefore is
399
a,
46,
6c,
47, e
a, 46,
6c ,
47,
e
P,
2Q, R
P,
2Q,
R
P,
2Q,
£
P, 2 Q,
R
viz. this determinant is the transformed quartic (cq, 6 ls c 1} d u e l )(x 1 , y^) 4 .
The developed expression of the determinant is
a?R 4 — 8 abQR 3
+(; \l t) PR2 - 24 mQ,R2+ (- 4't) PQRs - 32
+ ^- 32 bdj P’№ + (“ PQ‘R + 16 cwQ 1
+ (- 48 rf) p W - 32 beP «* + C “ #) P2R + 24 ^
— 8 deP 3 Q + e 2 P 4 ,
so that writing for P, Q, R their values, we have the transformed function
(oq, b 1} c 1} d 1} e 2 ) (x 1 , i/0 4 , the coefficients being of the forms
0! = (a, b, c, d, ef (a, ¡3, y) 4
&i=( „ ) 2 («, 0, 7) 3 ( a '> y)
0i = ( » ) 2 • • • («. 7) 4 -
Writing 7, J for the invariants of the quartic (1), and
A = 4 (a/3' - a'/3) (#/ “ £'7) “ (7 a ' — 7'«) 2 >
£ = (e, c, a, b, c, d) (a/3' - a'/3, 7 a ' — 7 a > — /^V) 2 »
we have /, 7, ri, B simultaneous invariants of the forms (1) and (2). Putting more
over V = 7 3 — 27/ 2 , and writing I 1 , J 1} V 1; for the like invariants of the form (3), I find
4 = 4 (4 ZB 2 + 12 74P +£ 7 2 ri 2 ),
7 X = 8 {8 7P 3 + f P-AP 2 + 2 774 2 P + (27 2 - ^7 3 ) A 3 },
and thence
Vj = 256 (4B 3 — IA 2 B — JA 3 ) V.