Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., late sadlerian professor of pure mathematics in the University of Cambridge (Vol. 8)

410 
ON THE NON-EUCLIDIAN GEOMETRY. 
[528 
The distance BC, or say a, of any two points B, G is by definition as follows 
Radius of circle = 1: 
In A ABC, sides are a, b, c: 
angles „ A, B, C: 
OA , OB , OC are = sin p, sin q, sin r : 
OA' , OB' , OG' „ „ sin a, sin b, sin c: 
$B0C, CO A, AOB „ „ a, ¡3, y. 
_ . . BI.GJ 
a ~ 2 ° g BJf. Cl ’ 
(where I, J are the intersections of the line BC with the circle); that is, 
- - 0 /BI.CJ, /BJ.CI 
s -(- 6 j oi .j cosh cl BJ Cl BI CJ ’ 
where the numerator is 
BI .CJ+BJ.CI 
•Jbi . BJ V CI. CJ ’ 
BI (BJ - BC) + CI (BC + CJ), = BI. BJ +CI.CJ+BC(CI-BI), 
= BI.BJ+CI. CJ+BCi 
Hence taking a for the distance BC, and sing, sinr, for the distances OB, OC respec 
tively, we have BI. BJ = cos 2 q, CI. CJ = cos 2 r; and the formula is 
, _ cos 2 q -f cos 2 r + a 2 
cosh a = ¿r 3 —- , 
l cos q cos r 
or, what is the same thing, taking a for the angle BOC, and therefore 
a 2 = sin 2 q + sin 2 r — 2 sin q sin r cos a, 
we have 
, _ 1 — sin q sin r cos a 
cosh a = 1 . 
cos q cos r 
In a similar manner, if sin a is the perpendicular distance from 0 on the line BC 
(that is, a sin a = sin q sin r sin a) it can be shown that 
. , _ a cos a 
smh a , 
cos qcos r 
the equivalence of the two formulae appearing from the identity 
cos 2 q cos 2 r = (1 — sin q sin r cos a) 2 — a 2 + a? sin 2 a, 
which is at once verified. 
Next for an angle; we have by definition 
j _ 1 , sin BAI. sin CAJ 
21 8 sin CAI. sin BAJ’
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.